3
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Fabrication Techniques of Optical Fibres (Invited Paper)

Pages 232-242 | Received 19 Feb 1985, Published online: 02 Jun 2015

REFERENCES

  • R D Maurer, Glass fibres for optical communications, Proc IEEE, vol 61, pp 452–462, 1973.
  • T G Gialliorenzi, Optical communications research and technology: fibre optics, Proc IEEE, vol 66, pp 744–780, 1978.
  • B P Pal, Optical communication fiber waveguide fabrication: A review, Fibre and Integrated Optics, vol 2, pp 195–252, 1979.
  • I W Versluis, J G J Peelen, Optical communication fibres: Manufacture and properties, Philips Telecomm Rev, vol 37, pp 215–230, 1979.
  • P C Schultz, Progress in optical waveguide process and materials, Appl Opt, vol 18, pp 3684–3693, 1979.
  • G J Koel, Technical and economic aspects of the different fibre fabrication processes, Proc 8 ECOC, pp 1–8, Cannes 1982.
  • N S Kapany, Fibre optics principles and applications, Academic Press, New York 1967.
  • H G Unger, Planar optical waveguides and fibres, Clarendon Press, Oxford 1977.
  • K J Beales et al, Multicomponent glass fibres for optical communications, Proc IEEE, vol 68, pp 1191–1194, 1980.
  • K Koizumi et al, New light-focusing fibers made by a continuous process, Appl Opt, vol 13, pp 255–260, 1974.
  • F P Kapron et al, Radiation losses in glass optical waveguides, Appl Phys Lett, vol 17, pp 423–425, 1970.
  • T Miya et al, Ultimate low loss single-mode fibres at 1.55 μm, Electr Lett, vol 15, pp 106–108, 1979.
  • S Tomaru et al, VAD single-mode fibre with 0.2 dB/km loss, ibid, vol 17, pp 92–93, 1981.
  • P C Schultz, Fabrication of optical waveguides by the outside vapor deposition process, Proc IEEE, vol 68, pp 1187–1190, 1980.
  • M G Blankenship & C W Deneka, The outside vapor deposition method of fabricating optical waveguide fibres, IEEE Journ Quant Electr, vol QE-18, pp 1418–1423, Oct 1982.
  • G E Berkey, Fluorine-doped fibres by the outside vapor deposition process, Techn Dig OFC84, pp 20–21, New Orleans 1984.
  • W G French et al, Low loss fused silica optical waveguide with borosilicate cladding, Appl Phys Lett, vol 23, pp 338–339, 1973.
  • J B MacChesney et al, Low-loss silica core-borosilicate clad fibre optical waveguide, Appl Phys Lett, vol 23, pp 340–341, 1973.
  • W G French et al, Optical waveguides with very low losses, BSTJ, vol 53, pp 951–954, 1974.
  • J B MacChesney et al, A new technique for the preparation of low-loss and graded-index optical fibres, Proc IEEE, vol 62, pp 1280–1281, 1974
  • G W Tasker & W G French, Low-loss optical waveguides with pure fused Si02 cores, Proc IEEE, vol 62, pp 1281–1282, 1974
  • J B MacChesney et at, Preparation of low-loss optical fibres using simultaneous vapor phase deposition and fusion, Proc 10 Intern Congr on Glass, pp 6–40–45, Kyoto 1974.
  • S R Nagel et al, An overview of the modified chemical vapor deposition (MCVD) process and performance, IEEE Journ Quant Electr, vol QE-18, pp 459–476, 1982.
  • W A Gambling et al, Optical fibres based on phosphosilicate glass, Proc IEE, vol 123, pp 570–576, 1976.
  • S E Miller, A G Chynoweth (Eds), Optical fibre telecommunications, Academic Press, New York, 1979.
  • K B McAffee Jr et al, Equilibria Concentrations in the Oxidation of SiCI4 and GeCI4 for Optical Fibres, Journ Lightwave Techn, vol LT-1, pp 555–561, Dec 1983.
  • K L Walker et al, Chemistry of fluorine incorporation in the fabrication of optical fibres, Tech Dig OFC83, pp 36–37, New Orleans 1983.
  • A Kawana et al, Fluorine sources for single mode fibres, Trans IECE Japan, vol E65, pp 529–533, 1982.
  • K L Walker et al, Thermophoretic Deposition of small particles in the modified chemical vapor deposition (MCVD) process, J American Ceram Soc, vol 63, pp 552–558, 1980.
  • H Schneider et al, A new method to reduce the central dip and the OH-content in MCVD-preforms, Proc 8 ECOC, pp 36–40, Cannes 1982.
  • J Peelen et al, Dipless multimode and monomode fibers manufactured by the PCVD process, Techn Dig OFC84, pp 68–69, New Orleans 1984.
  • J W Fleming & V R Raju, Low-loss single-mode fibres prepared by plasma-enhanced MCVD, Electr Lett, vol 17, pp 867–868, 1981.
  • R E Jaeger et al, The preparation of optical waveguide preforms by plasma deposition, BSTJ, vol 57, pp 205–210, 1978.
  • P B O'Connor et al, Plasma-enhanced modified chemical vapor deposition: a versatile high-rate process, Tech Dig OFC85, pp 100–101, San Diego 1985.
  • S R Nagel, J W Fleming, Latest developments in fibre manufacture by MCVD and PMCVD, Techn Dig OFC84, pp 52–53, New Orleans 1984.
  • P Geittner et al, Low loss optical fibers prepared by plasma-activated chemical vapor deposition (PCVD), Appl Phys Lett, vol 28, p 645, 1976.
  • P Bachmann et al, The deposition efficiency for the Ge02 doping in optical fibre preparation by mears of low pressure PCVD, Proc 8 ECOC, pp 614–617, Cannes 1982.
  • P Bachmann et al, Fluorine doped single-mode and step index fibres prepared by the low pressure PCVD process, Proc 8 ECOC, pp 66–69, Cannes 1982.
  • R Setaka et al, Fluorine-doping levels in the low pressure PCVD process, Techn Dig OFC84, pp 68–69, New Orleans 1984.
  • P Bachmann et al, PCVD DFSM-Fibres: Performance, Limitations, Design Optimization, Proc 11 ECOC, pp 197–200, Venice 1985.
  • A Muehlich et al, A new doped fused silica as bulk material for low-loss optical fibres, Proc 1 ECOC, London 1975.
  • A Muehlich et al, Preparation of fluorine doped silica preforms by plasma chemical technique, Proc 3 ECOC, pp 10–11, Munich 1977.
  • W Lieber et al, Three-Step-Index strictly single-mode only F-doped silica fibre for broadband low dispersion, Proc 11 ECOC, pp 201–204, Venice 1985.
  • T Izawa et al, Continuous fabrication of high silica fibre preform, Techn Dig IOOC77, p 375, Tokyo 1977.
  • T Izawa, N Inagaki, Materials and processes for fibre preform fabrication—vapor phase axial deposition, Proc IEEE, vol 68, pp 1184–1187, 1980.
  • M Horiguchi et al, Transmission characteristics of ultrawidc bandwidth VAD fibres, Proc 8 ECOC, pp 75–80, Cannes 1982.
  • H Suda et al, Double-flame VAD process for high-rate deposition, Proc 10 ECOC, pp 296–297, Stuttgart 1984.
  • S Sudo et al, Transmission characteristics of long-length VAD fibres, Trans IECE Japan, vol E64, pp 175–180, 1981.
  • S Sudo et al, Refractive-index profile control techniques in the vapor phase axial deposition method, Trans IECE Japan, vol E64, pp 536–543, 1981.
  • L S Watkins, Control of fibre manufacturing process, Proc IEEE, vol 70, pp 626–634, 1982.
  • M Kawachi et al, Deposition properties of Si02-Ge02 particles in the flame hydrolysis reaction for optical fibre fabrication, Jpn J Appl Phys, vol 19, pp L69–L71, 1980.
  • T Edahiro et al, Deposition properties of high silica particles in the flame hydrolysis reaction for optical fibre fabrication, Jpn J Appl Phys, vol 19, pp 2047–2054, 1980.
  • N Yoshioka et al, Graded-Index Profile Formation and Transmission Characteristics of VAD Fibre, Proc 6 ECOC, pp 10–13, York 1980.
  • T Moriyama et al, Ultimately low OH-content VAD optical fibres, Electr Lett, vol 16, pp 698–699, 1980.
  • F Hanawa et al, Fabrication of completely OH-free VAD fibre, Electr Lett, vol 16, pp 699–700, 1980.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.