43
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Modelling of Strained Silicon-Germanium Material Parameters for Device Simulation

Pages 215-236 | Published online: 01 Sep 2014

References

  • SC Jain, Germanium-Silicon Strained Layers and Heterostructures, Academic Press Inc. New York, 1994.
  • CK Maiti & G A Armstrong, Applications of Silicon-Germanium Heterostructure Devices, Inst of Physics pub, UK, 2001.
  • N Zerounian, F Aniel, R Adde & A Gruhle. SiGe heterojunction bipolar ransistor with 213 GHz fT at 77 K, Electronics Lett, vol 36, pp 1076–1078, 2000.
  • S J Koester, R Hammond, J O Chu, P M Mooney, J A Ott, L Perraud, K A Jenkins, C S Webster, I Lagnado & P R de la Houssaye, SiGe pMODFETs on Silicon-on-Sapphire Substrates with 116 GHz fmax IEEE Elec Dev Lett, vol 22, pp 92–94, 2001.
  • B Pejcinovic, L E Kay, T W Tang & D H Navon, Numerical Simulation and Comparison of Si BJT’s and Si1−x,GexHBT’s, IEEE Trans Electron Dev, vol 36, pp 2129–2137, 1989.
  • T Won & H Morkoc, High speed performance of Si1−xGex heterojunction bipolar transistors, IEEE Electron Dev Lett, vol 10, pp 33–35, 1989.
  • R J E Hueting, J W Slotboom, A Pruijmboom, W B de Boer, E C Timmering & N E B Cowern, On the Optimization of SiGe-Base Bipolar Transistors, IEEE Trans Electron Dev, vol 43, pp 1518–1524, 1996.
  • M Andersson, Z Xia, P Kuivalainen & H Pohjionen, Compact Si1−xGex/Si Heterojunction Bipolar Transistor Model for Device and Circuit Simulation, IEE Proc Circuits Devices Syst, vol 142, pp 1–7,1995.
  • HCD Graaff & W J Kloosterman, New Formulation of the Current and Charge Relations in Bipolar Transistor Modeling for CACD Purposes, IEEE Trans Electron Dev, vol 32, pp 4215–2419, 1985.
  • D M Richey, J D Cressler & A J Joseph, Scaling Issues and Ge Profile Optimization in Advanced UHV/CVD SiGe HBT’s, IEEE Trans Electron Dev, vol 44, pp 431–440, 1997.
  • Silvaco International, Silvaco-ATLAS/BLAZE, 2005.
  • Avant! Corporation, Fremont, CA, Two-Dimensional Device Simulation Program, Tech Rep MEDICI Ver 4.1, 1998.
  • Stanford University, PISCES-2ET2-D Device Simulator, 1994.
  • S Amon, B Ferk, D Vrtacnik, D Resnik, D Krizaj & S Sokolic, 2D numerical modeling of SiGe structures, in Mediterranean Electrotechnical Conf, vol 1, pp 326–329, 1998.
  • C K Maiti & G A Armstrong, Simulation of Silicon Germanium HBTs using ATLAS, Simulation Standard, pp 6–8, 1997.
  • E Kasper, Editor, Properties of Strained and Relaxed Silicon Germanium, INSPEC, The Institute of Electrical Engineers, London, 1995.
  • R People, Indirect band gap of coherently strained GexSi1−x bulk alloys on <100> silicon substrates, Phys Rev, vol 32, pp 1405–1408, 1985.
  • B L Tron, M D R Hashim, P Ashbum, M Mouis, A Chantre & G Vincint, Determination of bandgap narrowing and parasitic energy barriers in SiGe HBT’s integrated in a bipolar technology, IEEE Trans Electron Dev, vol 44, pp 715–722, 1997.
  • P Ashburn, H Boussetta, M D R Hashim, A Chantre, M Mouis, G J Parker & G Vincent, Electrical determination bandgap narrowing in bipolar transistors with epitaxial Si, epitaxial Si1−xGex, and ion implanted bases, IEEE Trans Electron Dev, vol 43, pp 774–782, 1996.
  • Z Matutinovic-Krstelj, V Venkataraman, E J Prinz, J C Sturm & C W Magee, Base resistance and effective bandgap reduction in n-p-n Si/Si1−xGex HBTs with heavy base doping, IEEE Trans Electron Dev, vol 43, pp 457–466, 1996.
  • S C Jain, J Poortmans, S S Iyer, J J Loferski, J Nijs, R Mertens & R van Overstraeten, Electrical and optical bandgaps of GexSi1−x strained layers, IEEE Trans Electron Dev, vol 40, pp 2338–2343,1993.
  • A Pruijmboom, J W Slotboom, D J Gravesteijn, C W Fredriksz, A A van Gorkum, R A van de Heuvel, J M L van Rooij-Mulder, G Streutker & G F A van de Walle, Heterojunction bipolar transistors with SiGe base grown by molecular beam epitaxy, IEEE Electron Dev Lett, vol 12, pp 357–359, 1991.
  • C A King, J L Hoyt & J F Gibbons, Bandgap and Transport Properties of Si/Si1−xGex/Si by Analysis of Nearly Ideal Si/SiSi/Si1−xGex/Si Heterojunction Bipolar Transistor, IEEE Trans Electron Dev, vol 36, pp 2093–2104,1989.
  • E J Prinz, P M Garone, P V Schwartz, X Xiao & J C Sturm, The effect of base-emitter spacers and strain-dependent densities of states in Si/Si1−xGex/Si heterojunction bipolar transistors, in IEEE IEDM Tech Dig, pp 639–642, 1989.
  • S S Iyer, G L Patton, J M C Stork, B S Meyerson & D L Harame, Heterojunction Bipolar Transistor Using Si-Ge Alloys, IEEE Trans Electron Dev, vol 36, pp 2043–2063, 1989.
  • G L Patton, S S Iyer, S L Delage, S Tiwari & J M C Stork, Silicon-germanium base heterojunction bipolar transistors by molecular beam epitaxy, IEEE Electron Dev Lett, vol 9, pp 165–167, 1988.
  • J C Bean, Silicon-based semiconductor heterostructures: Column IV bandgap engineering, Proc IEEE, vol 80, pp 571–587, 1992.
  • C G van de Walle & R M Martin, Theoretical Study of Si/Ge Interfaces, J Vac Sci Technol B, vol 3, pp 1256–1259, 1985.
  • R People & J C Bean, Band Alignments of Coherently Strained Si1−xGex/Si Heterostructures on <001> GeySi1−y, Substrates, Appl Phys Lett, vol 48, pp 538–540, 1986.
  • W X Ni, J Knall & G V Hansoon, New Method to Study Band Offsets Applied to Strained Si/1−xGex (100) Heterojunction Interfaces, Phys Rev B, vol 36, pp 7744–7747, 1987.
  • S Takagi, J L Hoyt, K Rim, J J Welser, J F Gibbons, G van de Wall & R M Martin, Evaluation of the Valence Band Discontinuity of Si/Si1−xGex/Si Heterostructures by Application of Admittance Spectroscopy to MOS Capacitors Theoretical Study of Si/Ge Interfaces, IEEE Trans Electron Dev, vol 45, pp 494–501, 1998.
  • K Nauka, TI Kamins, J E Turner, C A King, J L Hoyt & J F Gibbons, Admittance Spectroscopy Measurements of Band Offsets in Si/Si1−xGex/Si Heterostructures, Appl Phys Lett, vol 60, pp 195–197, 1992.
  • K Rim, S Takagi, J J Welser, J L Hoyt & F Gibbons, Capacitance-voltage characteristics of p-Si/SiGeC MOS capacitors, Mat Res Soc Symp Proc, vol 379, pp 327–332, 1995.
  • C H Gan, J A del Alamo, B R Bennett, B S Meyerson, E F Crabbe, C G Sodini & L R Reif, Si/Si1−xGex valence band discontinuity measurements using a semiconductor-insulator-semiconductor (SIS) heterostructure, IEEE Trans Electron Dev, vol 41, pp 2430–2439, 1994.
  • R People, Physics and Applications of SiSi1−xGex Strained-Layer Heterostructures, IEEE J Quantum Elec, vol 22, pp 1696–1710, 1986.
  • C Jungemann, S Keith & B Meinershagen, Full-Band Monte Carlo Device Simulation of a Si/SiGe-HBT with a Realistic Ge Profile, IEICE Trans Electron, vol E83, pp 1228–1234, 2000.
  • M M Rieger & P Vogl, Electronic-Band Parameters in Strained Si1−xGex Alloys on Si1−yGey Substrates, Phys Rev B, vol 48, pp 14276–14287,1993.
  • M V Fischetti & S E Laux, Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys, J Appl Phys, vol 88, pp 2234–2252, 1996.
  • M A Green, Intrinsic concentration, effective densities of states, and effective mass in Si, J Appl Phys, vol 67, pp 2944–2954, 1990.
  • O Madelung, Semiconductors Group IV Elements and III-V Compounds. Springer-Verlag, Data in Science and Technology, Germany, 1991.
  • M V Fischeti, Monte Carlo Simulation of Transport in Technologically Significant Semiconductor of the Diamond and Zinc-Blende Structures – Part I: Homogeneous Transport, IEEE Trans Electron Dev, vol 38, pp 634–649, 1991.
  • F M Bufler, P Graf, B Meinerzhagen, D Adeline, M M Rieger, H Kabbel & G Fischer, Low-and high-field electron-transport parameters for untrained and strained Si1−xGex, IEEE Electron Dev Lett 18, pp 264–266, 1997.
  • J C Hensel & G Feher, Cyclotron Resonance Experiments in Uniaxially Stress Silicon, Phys Rev, vol 129, pp 1041–1062,1963.
  • Y Fu, Q Chen & M Willander, Resonant tunneling of holes in Si/GexSi1−x J Appl Phys, vol 70, pp 7468–7473, 1991.
  • S K Chun & K L Wang, Effective mass and mobility of holes in strained Si1−xGex layers on (001) Si1−yGey substrate, IEEE Trans Electron Dev, vol 39, pp 2153–2164, 1992.
  • T Manku & A Nathan, Effective mass for strained p-type Si1−xGex, J Appl Fliys, vol 69, pp 8414–8416,1991.
  • J E Lang, F L Madarasz & P M Hemenger, Temperature dependent density of states effective mass in nonparabolic p-type silicon, J Appl Phys, vol 54, p 3612, 1983.
  • J E Sutherland & J R Hauser, A computer analysis of heterojunction and graded composition solar cells, IEEE Trans Electron Dev, vol 24, pp 363–372,1977.
  • F L Madarasz, J E Lang & P M Hemeger, Effective Masses for Nonparabolic Bands in p-lype Silicon, J Appl Phys, vol 52, pp 4646–4648, 1981.
  • H D Barber, Effective Mass and Intrinsic Concentration in Silicon, Solid-Sate Electron, vol 10, pp 1039–1051, 1967.
  • J W Slotboom & H C deGraff, Measurement of bandgap narrowing in Si bipolar transistor, Solid-State Electron, vol 19, pp857–862, 1976.
  • D B M Klaassen, J M Slotboom & H C De Graaff, Unified apparent bandgap narrowing in n- and p-type silicon, Solid-State Electron, vol 35, pp 125–129, 1992.
  • J W Slotboom & H C deGraff, Bandgap Narrowing in Silicon Bipolar Transistor, IEEE Trans Electron Dev, vol 24, pp 1123–1125, 1977.
  • J A del Alamo & R M Swanson, Measurement of steady-state minority-carrier transport parameters in heavily doped n-type silicon, IEEE Trans Electron Dev, vol 34, pp 1580–1589, 1987.
  • S E Swirhun, Y H Kwark & R M Swanson, Measurement of electron lifetime, electron mobility and bandgap narrowing in heavily doped p-type Silicon, in IEEE IEDM Tech Dig, pp 24–27, 1986.
  • S C Jain & D J Roulston, A simple expression for band gap narrowing (BGN) in heavily doped Si, Ge, GaAs and GexSi1−x strained layers, Solid-State Electron, vol 34, pp 453–465, 1991.
  • T I Kamins et al. Small geometry, high-performance, Si-Si1−xGex heterojunction bipolar transistors, IEEE Electron Dev Lett,vol 10, pp 503–505, 1989.
  • A Gruhle, H Kibbel, U Erben & E Kasper, MBE-Grown Si/SiGe HBT’s with High β, fT, and fmax, IEEE Electron Dev Lett, vol 13, pp 206–208, 1992.
  • A F da Silva, C Y An, J C de Souza, A S Alves, T S da Silva, N S Dantas, J S Almeida, A V B da Silva & I Pepe, Optical Characterization and Mctal-Nonmetal Transition of Boron-Doped Si1−xGex Alloy, Solid-State Electron, vol 43, pp 17–20, 1999.
  • B Y Tsaur, C K Chen & S A Manno, Long-Wavelength GexSi1−x/Si. Heterojunction Infrared Detector and 400 X 400- Element Imager Arrays, IEEE Electron Dev Lett, vol 12, pp 293–296,1991.
  • P M Garone, V Venkataraman & J C Strum, Hole Mobility Enhancement in MOS-Gated GexSi1−x/Si Heterostructure Inversion Layers, IEEE Electron Dev Lett, vol 13, pp 56–58, 1992.
  • J Poortmans, S C Jain, D H J Totterdell, M Caymax, J F Nus, R P Mertens & R V Overstraeten, Theoretical Calculation and Experimental Evidence of the Real and Apparent Bandgap Narrowing Due to Heavy Doping in p-Type Si and Strained Si1−xGex Layers, Solid-State Electron, vol 36, pp 1763–1771,1993.
  • I M Anteney, G Lippert, P Ashburn, H J Osten, B Heinemann, G J Parker & D Knoll, Characterization of-the effectiveness of carbon incorporation in SiGe for the elimination of parasitic energy barriers in SiGe HBTs, IEEE Electron Dev Lett, vol 20, pp 116–118, 1998.
  • D M Caughey & R E Thomas, Carrier mobilities in silicon empirically related to doping and field, in IEEE Proc, vol 55, pp 2192–2193, 1967.
  • N D Arora, J R Hauser & D J Roulston, Electron and Hole Mobility in Silicon as a Function of Concentration and Temperature, IEEE Trans Electron Dev, vol 29, pp 292–295, 1982.
  • G Masetti, M Severi & S Solmi, Modeling of Carrier Mobility Against Carrier Concentration in Arsenic-, Phosporus-, and Boron-Doped Silicon, IEEE Trans Electron Dev, vol 30, pp 764–769, 1983.
  • J Dziewior & D Silber, Minority-carrier diffusion coefficients in highly doped silicon, Appl Phys Lett, vol 35, pp 170–172, 1979.
  • A B Sproul, M A Green & A W Stephens, Accurate determination of minority carrier- and lattice scattering-mobility in silicon from photoconductance decay, J Appl Phys, vol 72, pp 4161–4171, 1992.
  • C Jungemann, B Heinemann, K Tittelbach-Helmrich & B Meinerzhagen, An Accurate, Experimentally Verified Electron Minority Carrier Mobility Model for Si and SiGe, in IEEE IEDM Tech Dig, pp 101–104, 2000.
  • S E Swirhun, J A del Alamo & R M Swanson, Measurement of hole mobility in heavily doped n-type silicon, IEEE Electron Dev Lett, vol7, pp 168–171,1986.
  • W R Thurber, R L Mattis & Y M Liu, Resistivity-dopant density relationship for boron-doped silicon, J Electrochem Soc : SolidState Sc and Tech, vol 127, pp 2291–2294, 1980.
  • D B M Klaassen, A Unified Mobility Model for Device Simulation-I. Model Equations and Concentration Dependence, Solid-State Electron, vol 35, pp 953–959, 1992.
  • D B M Klaassen, A Unified Mobility Model for Device Simulation-II. Temperature Dependence of Carrier Mobility and Lifetime, Solid-State Electron, vol 35, pp 961–967, 1992.
  • J M Hinckley & J Singh, Hole transport theory in pseudomorphic Si1−xGex alloys grown on Si(OOl) substrates, Phys Rev B, vol 41, pp 2912–2926, 1990.
  • S Krishnamurthy, A Sher & A B Chen, Generalized Brooks Formula, and the Electron Mobility in Si1−xGex Alloys, Appl Phys Lett, vol 47, pp 160–162, 1985.
  • T Manku & A Nathan, Electron drift mobility model for ‘devices based on unstrained and coherently strained Si1−xGex grown on <001> silicon substrate, IEEE Trans Electron Dev, vol 39, pp 2082–2089, 1992.
  • L E Key & T W Tang, Monte Carlo Calculation of Strained and Unstrained Electron Mobilities in Si1−xGex Using an Improved Ionized-impurity Model, J Appl Phys, vol 70,pp 1483–1488, 1991.
  • T Manku, J M McGregor, A Nathan, D J Roulston, J P Noel, & D C Houghton, Drift hole mobility in strained and unstrained doped Si1−xGex alloys, IEEE Trans Electron Dev, vol 40, pp 1990–1996, 1990.
  • J S Rieh, P Bhattacharya & E T Croke, Temperature Dependent Minority Electron Mobilities in Strained Si Ge (0.2 ≤ × ≤ 0.4) Layers, IEEE Trans Electron Dev, vol 47, pp 883–890, 2000.
  • X Chen, K C Liu, S K Jayanarayanan & S Banerjee, Electron mobility enhancement in strained SiGe vertical n-type metal-oxide-semiconductor field-effect transistors, Appl Phys Lett, vol 78, pp 377–379,2001.
  • F M Bufier, P Graf & B Meinerzhagen, Hole transport investigation in unstrained and strained SiGe, J Vac Sc Technol B, vol 16, pp 1667–1669, 1998.
  • F M Buffer, P Grak, S Keith & B Meinerzhagen, Full band Monte Carlo investigation of electron transport in strained Si grown on Si, _xGex substrates, Appl Phys Lett, vol 71, pp 3477–3499, 1997.
  • Q Lu, M R Sardela, Jr, T R Bramblett & J E Greene, B-Doped Fully Strained Si1−xGex Layers Grown on Si(001) by Gas-Source Molecular Beam Epitaxy from Si2H6, Ge2H6, and B2H6: Charge Transport Properties, J Appl Phys, vol 80, pp 4458–4466, 1996.
  • T K Carns, S K Chun, M O Tanner, K L Wang, T I Si1−xGex Kamins, J E Turner, D Y C Lie, M A Nicolet & R G Wilson, Hole mobility measurements in heavily doped Si1−xGex strained layers, IEEE Trans Electron Dev, vol 51, pp 1273–1281, 1994.
  • K B Joelsson, Y Fu, W X Ni & G V Hansson, Hall Factor and Drift Mobility for Hole Transport in Strained Si1−xGex Alloys, J.Appl Phys, vol 81, pp 1264–1269, 1997.
  • K K Thornber, Current equation for velocity overshoot, IEEE Electron Dev Lett, vol 3, pp 69–71,1982.
  • C Canali, G Majni, R Minder & G Ottaviani, Electron and hole drift velocity measurements in silicon and their empirical relation to electric field and temperature, IEEE Trans Electron Dev, vol 22, pp 1045–1047, 1975.
  • W Hansch & M M Mattausch, The hot-electron problem in small semiconductor devices, J Appl Phys, vol 60, pp 650–656, 1986.
  • S C Lee, T W Tang & D H Navon, Transport model for MBTE, in 6th Int NASECODE Conf, pp 478–483,1989.
  • B Senapati, C K Maiti & N B Chakrabarti, Silicon Heterostructure Devices for RF Wireless Communication, in Int’l Conf on VLSI Design, Calcutta, pp 488–491, 2000.
  • M Ershov & V Ryzhii, High-field electron transport in SiGe alloy, J Appl Phys, vol 33, pp 1365–1371, 1994.
  • H Mau, Anpassung and Implementation des Energietransportmodells zur vergleichenden Simulation mit dem Drift-Diffusions-Modell an SiGe Hetero-bipolartransistoren. PhD thesis, Technische Universit, at Ilmenau, Institut fur Festkorperelektronik, 1997.
  • S M Sze, Physics of Semiconductor Devices, John Wiley & Sons, New York, 2nd ed, 1981.
  • J G Fossum & D S Lee, A Physical Model for the Dependence of Carrier lifetime on Doping Density in Nondegenerate Silicon, Solid-State Electron, vol 25, pp 741–747, 1982.
  • M S Tyagi & R V Overstraeten, Minority Carrier Recombination in Heavily-Doped Silicon, Solid-State Electron, vol 26, pp 577–597, 1983.
  • A Schenk, A Model for the Field and Temperature Dependence of Shockley-Read-Hall Lifetimes in Silicon, Solid-State Electron, vol 35, pp 1585–1596, 1992.
  • T Ghani, J L Hoyt, D B Nobel, J F Gibbons, J E Turner, & T I Kamins, Effect of Oxygen on Minority carrier Lifetime and Recombination Currents in Si1−xGex Heterostructure Devices, Appl Phys Lett, vol 58, pp 1371 –1374, 1991.
  • P V Schwartz & J C Strum, Microsecond Carrier Lifetimes in Strained Silicon-Germanium Alloys Grown by Rapid Thermal Chemical Vapor Deposition, Appl Phys Lett, vol 57, pp 2004–2006, 1990.
  • C A King, J L Hoyt, C M Gronet, J F Gibbons, M P Scott & J Turner, Si/Si1−xGex heterojunction bipolar transistors produced by limited reaction processing, IEEE Electron Dev Lett, vol EDL-10, pp 52–54,1989.
  • G S Higashi, J C Bean, C Buescher, R Yadvish & H Temkin, Improved Minority-Carrier Lifetimes in Si/SiGe Heterojunction Bipolar Transistors Grown by Molecularbeam Epitaxy, Appl Phys Lett, vol 56, pp 2560–2568, 1990.
  • S Selberherr, Analysis and Simulation of Semiconductor Devices, Springer Verlag, Vienna, 1984.
  • Lee, A L Gutierrez-Aitkcn, S H Li & P K Bhattacharya, Responsivity and impact ionization coefficients of Si1−xGex photodiodes, IEEE Trans Electron Dev, vol 43, pp 977–981, 1996.
  • K Yeom, J M Hinckley & J Singh, Calculation of electron and hole impact ionization coefficients in SiGe alloys, J Appl Phys, vol 80, pp 6773–6782, 1996.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.