309
Views
12
CrossRef citations to date
0
Altmetric
Articles

The Effect of Duty Cycle and Brightness Variation of Visual Stimuli on SSVEP in Brain Computer Interface Systems

&

REFERENCES

  • J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T. M. Vaughan, “Brain computer interfaces for communication and control,” Clin. Neurophysiol., vol. 113,(6), pp. 767–791, Jun. 2002.
  • J. R. Wolpaw, N. Birbaumer, W. J. Heetderks, D. J. McFarland, P. H. Peckham, G. Schalk, E. Donchin, L. A. Quatrano, C. J. Robinson, and T. M. Vaughan, “Brain computer interface technology: A review of the first international meeting,” IEEE Trans. Rehab. Eng., vol. 8(2), pp. 164–173, Jun. 2000.
  • T. Nishimura, M. Nakashige, T. Akashi, Y. K. Wakasa, and K. Tanaka, “Eye interface for physically impaired people by genetic eye tracking,” in Proc. Annu. Conf. Soc. Instrum. Control Eng., Takamatsu, Sept. 2007, pp. 828–833.
  • E. Donchin, K. V. Spencer, and R. Wijesinghe, “The mental prosthesis: Assessing the speed of a P300-based brain–computer interface,” IEEE Trans. Rehab. Eng., vol. 8(2), pp. 174–179, Jun. 2000.
  • N. Birbaumer, A. Kubler, N. Ghanayim, T. Hinterberger, J. Perelmouter, J. Kaiser, I. Iversen, B. Kotchoubey, N. Neumann, and H. Flor, “The thought translation device (TTD) for completely paralyzed patients,” IEEE Trans. Rehab. Eng., vol. 8(2), pp. 190–193, Jun. 2000.
  • J. R. Wolpaw, D. J. McFarland, G. W. Neat, and C. Forneris, “An EEG based brain–computer interface for cursor control,” Electroencephalogr. Clin. Neurophysiol., vol. 78, pp. 252–259, Mar. 1991.
  • G. Pfurtscheller and C. Neuper, “Motor imagery and direct brain computer communication,” Proc. IEEE, vol. 89(7), pp. 1123–1134, Jul. 2001.
  • L. A. Farwell and E. Donchin, “Talking off the top of your head: Toward a mental prosthesis utilizing event-related brain potentials,” Electroenceph. Clin. Neurophysiol., vol. 70, pp. 510–523, Dec. 1988.
  • Y. Zhang, G. Zhou, J. Jin, X. Wang, and A. Cichocki, “Optimizing spatial patterns with sparse filter bands for motor-imagery based brain-computer interface,” J. Neurosci. Methods, vol. 255, pp. 85–91, Nov. 2015.
  • E. E. Sutter, “The visual evoked response as a communication channel,” in Proc. IEEE/NSF Symp. Biosensors, Los Angeles, CA, Sept. 1984, pp. 95–100.
  • M. Middendorf, G. McMillan, G. Calhoun, and S. K. Jones, “Brain–computer interfaces based on the steady-state visual-evoked response,” IEEE Trans. Rehab. Eng., vol. 8(2), pp. 211–214, Jun. 2000.
  • F. B. Vialatte, M. Maurice, J. Dauwels, and A. Cichocki, “Steady state visually evoked potentials: Focus on essential paradigms and future perspectives,” Prog. Neurobiol., vol. 90, pp. 418–438, Apr. 2010.
  • D. Zhu, J. Bieger, G.G. Molina, and R.M. Aart, “A survey of stimulation methods used in SSVEP-based BCIs,” Comput. Intelli. Neurosci., vol. 2010, 702357, pp. 12, Jan. 2010.
  • S.H.C. Hendry and R.C. Reid, “The koniocellular pathway in primate vision,” Annual Rev. Neurosci., vol. 23, pp. 127–153, Mar. 2010.
  • E. Kaplan, “The M, P and K path way of the primate visual system,” in The Visual Neuroscience, Chalupa, LN, Ed. Cambridge: MIT Press, 2003, pp. 481–483.
  • L. J. Croner and E. Kaplan, “Receptive fields of P and M ganglion cells across the primate retina,” Vision Res., vol. 35, (1), pp. 7–24, Jan. 1995.
  • E. Kaplan and R.M. Shapley, “The primate retina contains two types of ganglion cells, with high and low contrast sensitivity,” Proc. Natl. Acad. Sci. USA, vol. 83(8), pp. 2755–2757, Apr. 1986.
  • D.I. MacLeod and A. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am., vol. 69(8), pp. 1183–1186, Aug. 1979.
  • S. K. Cheong, C. Tailby, S. G. Solomon, and P. R. Martin, “Cortical-like receptive fields in the lateral geniculate nucleus of marmoset monkeys,” J. Neurosci., vol. 16(33), pp. 6864–6876, Apr. 2013.
  • Y. Wang, Y. T. Wang, and T. P. Jung, “Visual stimulus design for high-rate SSVEP BCI,” Electron Lett., vol. 46(15) pp. 1057–1058, Jul. 2010.
  • X. Gao, D. Xu, M. Cheng, and S. Gao, “A BCI-based environmental controller for the motion-disabled,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 11(2), pp. 137–140, Jun. 2003.
  • K. Shyu, Y. Chiu, P. Lee, J. Liang, and S. Peng, “Adaptive SSVEP based BCI system with frequency and pulse duty-cycle stimuli tuning design,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 21(5), pp. 697–703, Sept. 2013.
  • Y. Kimura, T. Tanaka, H. Higashi, and N. Morikawa, “SSVEP-based brain-computer interfaces using FSK-modulated visual stimuli,” IEEE Trans. Biomed. Eng., vol. 60(10), pp. 2831–2838, Oct. 2013.
  • G. R. Muller-Putz and G. Pfurtscheller, “Control of an electrical prosthesis with an SSVEP-based BCI,” IEEE Trans. Biomed. Eng., vol. 55(1), pp. 361–364, Jan. 2008.
  • B. Dal Seno, M. Matteucci, and L.T. Mainardi, “The utility metric: A novel method to assess the overall performance of discrete brain–computer interfaces,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 18(1), pp. 20–28, Feb. 2010.
  • Z. Wu, “The difference of SSVEP resulted by different pulse duty-cycle,” in Communications, Circuits and Systems ICCCAS 2009 International Conference, Milpitas, CA, Jul. 2009, pp. 605–607.
  • K. K. Shyu, Y. J. Chiu, P. L. Lee, J. M. Liang, and S. H. Peng, “Adaptive SSVEP-based BCI system with frequency and pulse duty-cycle stimuli tuning design,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 21(5), pp. 697–703, Sept. 2013.
  • P. L. Lee, C. L. Yeh, J. Y. S. Cheng, C. Y. Yang, and G. Y. Lan, “An SSVEP-based BCI using high duty-cycle visual flicker,” IEEE Trans. Biomed. Eng., vol. 58(12), pp. 3350–3359, Dec. 2011.
  • N. V. Manyakov, N. Chumerin, A. Robben, A. Combaz, M. Van Vliet, and M. M. Van Hulle, “Sampled sinusoidal stimulation profile and multichannel fuzzy logic classification for monitor-based phase-coded SSVEP brain–computer interfacing,” J. Neural Eng., vol. 10(3), pp. 1–15, Apr. 2013.
  • X. Chen, Z. Chen, S. Gao, and X. Gao, “A high-ITR SSVEP-based BCI speller,” Taylor Francis Brain-Comput. Interfaces, vol. 1(3–4), pp. 181–191, Sept. 2014.
  • Z. Oralhan, R. Aldemir, M. Tokmakçı, and B. Yılmaz, “Effects of visual stimuli on EEG signals,” Nat. Congress Neurosci., İstanbul, Turkey, vol. 77, pp. 42–43, May 2014.
  • A. Duszyk, M. Bierzynska, Z. Radzikowska, P. Milanowski, R. Kus, P. Suffczyński, M. Michalska, M. Łabęcki, P. Zwoliński, and P. Durka, “Towards an optimization of stimulus parameters for brain computer interfaces based on steady state visual evoked potentials,” PLoS ONE, vol. 9(11), pp. 1–11, Nov. 2014.
  • Y. Zhang, G. Zhou, J. Jin, Q. Zhao, X. Wang, and A. Cichocki. “Sparse Bayesian classification of EEG for brain-computer interface,” IEEE Trans. Neural Networks Learn. Syst., Sept. 2015, doi:10.1109/TNNLS.2015.2476656
  • R. Ortner, B. Z. Allison, G. Korisek, H. Gaggl, and G. Pfurtscheller, “An SSVEP BCI to control a hand orthosis for persons with tetraplegia,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 19(1), pp. 1–5, Feb. 2011.
  • Y. Zhang, Q. Zhao, J. Jin, X. Wang, and A. Cichocki. “A novel BCI based on ERP components sensitive to configural processing of human faces,” J. Neural Eng., vol. 9(2), pp. 026018, Apr. 2012.
  • R. Hari Kumar and R. Sukanesh, “Fuzzy techniques with aggregation operators for classification and optimization of epilepsy risk level from EEG signals”, IETE J. Res., vol. 51(5), pp. 379–388, Mar. 2015.
  • R. S. Fisher, G. Harding, G. Erba, G. L. Barkley, and A. Wilkins, “Photic- and pattern-induced seizures: a review for the epilepsy foundation of america working group,” Epilepsia, vol. 46(9), pp. 1426–1441, Sept. 2005.
  • Z. Lin, C. Zhang, W. Wu, and X. Gao, “Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs,” IEEE Trans. Biomed. Eng., vol. 53(12), pp.2610–2614, Jun. 2007.
  • G. Bin, X. Gao, Z. Yan, B. Hong, and S. Gao, “An online multichannel SSVEP-based brain-computer interface using a canonical correlation analysis method,” J Neural Eng., vol. 6(4), pp. 1–6, Aug. 2009.
  • S. P. Kelly, E.C. Lalor, R. B. Reilly, and J. J. Foxe, “Visual spatial attention tracking using high density SSVEP data for independent brain–computer communication,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 13(2), pp. 172–178, Jun. 2005.
  • Y. Zhang, P. Xu, T. Liu, J. Hu, R. Zhang, and D. Yao, “Multiple frequencies sequential coding for SSVEP-based brain-computer interface,” PLoS One, vol. 7(3), e29519, Mar. 2012.
  • Y. Zhang, G. Zhou, Q. Zhao, A. Onishi, J. Jin, X. Wang, and A. Cichocki, “Multiway canonical correlation analysis for frequency components recognition in SSVEP-based BCIs,” in 18th Intl Conf. on Neural Information Processing (ICONIP), Shanghai, Nov. 2011, pp. 287–295.
  • Y. Zhang, G. Zhou, J. Jin, M. Wang, X. Wang, and A. Cichocki, “L1-regularized multiway canonical correlation analysis for SSVEP-based BCI,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 21(6), pp. 887–896, Nov. 2013.
  • Y. Zhang, G. Zhou, J. Jin, X. Wang, and A. Cichocki, “Frequency recognition in SSVEP-based BCI using multiset canonical correlation analysis,” Int. J. Neural Syst., vol. 24(4), pp. 1450013, Jan. 2014. doi:10.1142/S0129065714500130

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.