655
Views
44
CrossRef citations to date
0
Altmetric
Articles

Effective Doping of Monolayer Phosphorene by Surface Adsorption of Atoms for Electronic and Spintronic Applications

, , , &

REFERENCES

  • “The international technology roadmap for semiconductors (ITRS),” Semiconductor Industry Association, 2013. http://www.itrs.net/
  • A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater., Vol. 6, no. 183, pp. 183–91, 2007.
  • Z. Ni, Q. Liu, K. Tang, J. Zheng, J. Zhou, R. Qin, Z. Gao, D. Yu, and J. Lu, “Tunable bandgap in silicene and germanene,” Nano Lett., Vol. 12, no. 113, pp. 113–8, 2012.
  • P. Vogt, P. D. Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M. C. Asensio, A. Resta, B. Ealet, and G. L. Lay, “Silicene: Compelling experimental evidence for graphene like two-dimensional silicon,” Phys. Rev. Lett., Vol. 108, p. 155501, 2012.
  • E. Bianco, S. Butler, S. Jiang, O. D. Restrepo, W. Windl, and J. E. Goldberger, “Stability and exfoliation of germanane: A germanium graphane analogue,” ACS Nano, Vol. 7, no. 5, pp. 4414–21, 2013.
  • M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem, Vol. 5, no. 4, pp. 263–75, 2013.
  • K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-dimensional atomic crystals,” Proc. Natl. Acad. Sci. USA, Vol. 102, no. 30, pp. 10 451–3, 2005.
  • A. H. C. Neto and K. Novoselov, “New directions in science and technology: Two-dimensional crystals,” Rep. Prog. Phys., Vol. 74, no. 30, pp. 082 501–9, 2011.
  • Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nano, Vol. 7, pp. 699–712, 2012.
  • S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutirrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruo, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” Nat. Nano, Vol. 7, no. 4, pp. 2898–2926, 2013.
  • G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, “Electronics based on two-dimensional materials,” Nat. Nano, Vol. 9, pp. 768–79, 2014.
  • F. Schwierz, “Graphene transistors,” Nat. Nano, Vol. 5, pp. 487–96, 2010.
  • B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nano, Vol. 6, pp. 147–50, 2011.
  • L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nano, Vol. 9, pp. 372–7, 2013.
  • H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. D. Ye, “Phosphorene: An unexplored 2D semiconductor with a high hole mobility,” ACS Nano, Vol. 8, no. 4, pp. 4033–41, 2014.
  • S. P. Koenig, R. A. Doganov, H. Schmidt, A. H. Castro-Neto, and B. ÖZyilmaz, “Electric field effect in ultrathin black phosphorus,” Appl. Phys. Lett., Vol. 104, 2014. doi:10.1063/1.4868132
  • W. Lu, H. Nan, J. Hong, Y. Chen, C. Zhu, Z. Liang, X. Ma, Z. Ni, C. Jing, and Z. Zhang, “Plasma-assisted fabrication of monolayer phosphorene and its raman characterization,” Nano Res., Vol. 7, no. 6, pp. 853–9, 2014.
  • J. Qiao, X. Kong, Z.-X. Hu, F. Yang, and W. Ji, “High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus,” Nat. Commun., Vol. 5, 2014. doi:10.1038/ncomms5475
  • V. Tran, R. Soklaski, Y. Liang, and L. Yang, “Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus,” Phys. Rev. B, Vol. 89, pp. 235319–25, 2014.
  • X. Peng, Q. Wei, and A. Copple, “Strain-engineered direct-indirect band gap transition and its mechanism in two-dimensional phosphorene,” Phys. Rev. B, Vol. 90, pp. 085402–11, 2014.
  • A. Rodin, A. Carvalho, and A. C. Neto, “Strain-induced gap modification in black phosphorus,” Phys. Rev. Lett., Vol. 112, p. 176801, 2014.
  • R. Fei and L. Yang, “Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus,” Nano Lett., Vol. 14, no. 5, pp. 2884–9, 2014.
  • S. Zhao, W. Kangab, and J. Xue, “The potential application of phosphorene as an anode material in Li-ion batteries,” J. Mater. Chem. A, Vol. 2, no. 44, pp. 19046–52, 2014.
  • J. Dai and X. C. Zeng, “Bilayer phosphorene: Effect of stacking order on bandgap and its potential applications in thin-film solar cells,” J. Phys. Chem. C, Vol. 5, no. 7, pp. 1289–1293, 2014.
  • H. Guo, N. Lu, J. Dai, X. Wu, and X. C. Zeng, “Phosphorene nanoribbons, phosphorus nanotubes, and van der Waals multilayers,” J. Phys. Chem. C, Vol. 118, no. 25, pp. 14051–59, 2014.
  • V. Tran and L. Yang, “Scaling laws for the band gap and optical response of phosphorene nanoribbons,” Phys. Rev. B, Vol. 89, no. 24, p. 245407, 2014.
  • J. O. Sofo, A. S. Chaudhari, and G. D. Barber, “Graphene: A two-dimensional hydrocarbon,” Phys. Rev. B, Vol. 75, no. 15, p. 153401, 2007.
  • H. Valencia, A. Gil, and G. Frapper, “Trends in the adsorption of 3d transition metal atoms onto graphene and nanotube surfaces: A DFT study and molecular orbital analysis,” J. Phys. Chem. C, Vol. 114, no. 33, pp. 14141–53, 2010.
  • K. T. Chan, J. B. Neaton, and M. L. Cohen, “First-principles study of metal adatom adsorption on graphene,” Phys. Rev. B, Vol. 77, no. 23, p. 235430, 2008.
  • C. Ataca and S. Ciraci, “Functionalization of single-layer MoS2 honeycomb structures,” J. Phys. Chem. C, Vol. 115, no. 27, pp. 13 303–11, 2011.
  • J. Chang, S. Larentis, E. Tutuc, L. F. Register, and S. K. Banerjee, “Atomistic simulation of the electronic states of adatoms in monolayer MoS2,” Appl. Phys. Lett., Vol. 104, no. 14, p. 141603, 2014.
  • P. Rastogi, S. Kumar, S. Bhowmick, A. Agarwal, and Y. S. Chauhan, “Ab-initio study of doping versus adatom in monolayer MoS2,” Proceeding of International Conference on Emerging Electronics, Bangalore India, 2014.
  • P. Rastogi, S. Kumar, S. Bhowmick, A. Agarwal, and Y. S. Chauhan, “Doping strategies for monolayer MoS2 via surface adsorption: A systematic study,” J. Phys. Chem. C, Vol. 118, no. 51, pp. 30 309–30 314, 2014.
  • H. Fang, G. S. M. Tosun, T. C. Chang, K. Takei, J. Guo, and A. Javey, “Degenerate n-doping of few-layer transition metal dichalcogenides by potassium,” Nano Lett., Vol. 13, no. 5, pp. 1991–5, 2013.
  • V. V. Kulish, O. I. Malyi, C. Persson, and P. Wu, “Adsorption of metal adatoms on single-layer phosphorene,” Phys. Chem. Chem. Phys., Vol. 17, pp. 992–1000, 2015.
  • T. Hu and J. Hong, “First-principles study of metal adatom adsorption on black phosphorene,” J. Phys. Chem. C, Vol. 119, no. 15, pp. 8199–8207, 2015.
  • Y. Ding and Y. Wang, “Structural, electronic, and magnetic properties of adatom adsorptions on black and blue phosphorene: A first-principles study,” J. Phys. Chem. C, Vol. 119, no. 19, pp. 10 610–22, 2015.
  • X. Sui, C. Si, B. Shao, X. Zou, J. Wu, B.-L. Gu, and W. Duan, “Tunable magnetism in transition-metal-decorated phosphorene,” J. Phys. Chem. C, Vol. 119, no. 18, pp. 10059–63, 2015.
  • P. Srivastava, K. P. S. S. Hembram, H. Mizuseki, K.-R. Lee, S. S. Han, and S. Kim, “Tuning the electronic and magnetic properties of phosphorene by vacancies and adatoms,” J. Phys. Chem. C, Vol. 119, no. 12, pp. 6530–8, 2015.
  • A. Ziletti, A. Carvalho, P. E. Trevisanutto, D. K. Campbell, D. F. Coker, and A. H. C. Neto, “Phosphorene oxides: Bandgap engineering of phosphorene by oxidation,” Phys. Rev. B, Vol. 91, no. 8, p. 085407, 2015.
  • G. Wang, R. Pandey, and S. P. Karna, “Phosphorene oxide: Stability and electronic properties of a novel two-dimensional material,” Nanoscale, Vol. 7, no. 2, p. 524, 2015.
  • “Atomistix toolkit version 2014.0 QuantumWise A/S,” 2015. www.quantumwise.com.
  • M. Brandbyge, J.-L. Mozos, P. Ordejón, J. Taylor, and K. Stokbro, “Density-functional method for nonequilibrium electron transport,” Phys. Rev. B, Vol. 65, no. 16, p. 165401, 2002.
  • J. M. Soler, E. Artacho, J. D. Gale, A. Garca, J. Junquera, P. Ordejón, and D. Sànchez-Portal, “The Siesta method for ab initio order-n materials simulation,” J. Phys. Condens. Matter, Vol. 14, p. 2745–79,2002.
  • J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized radiant approximation made simple,” Phys. Rev. Lett., Vol. 77, no. 18, pp. 3865–8, 1996.
  • R. S. Mulliken, “Electronic population analysis on LCAOMO molecular wave functions. II. Overlap populations, bond orders, and covalent bond energies,” J. Chem. Phys., Vol. 23, no. 10, pp. 1841–6, 1955.
  • P. Giannozzi, et al. “QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials,” J. Phys. Condens. Matter, Vol. 21, no. 39, p. 395502, 2009.
  • S. Grimme, “Semiempirical GGA-type density functional constructed with a long-range dispersion correction,” J. Comput. Chem., Vol. 27, no. 15, pp. 1787–99, 2006.
  • G. Mills and H. Jònsson, “Quantum and thermal effects in H2 dissociative adsorption: Evaluation of free energy barriers in multidimensional quantum systems,” Phys. Rev. Lett., Vol. 72, no. 7, pp. 1124–7, 1994.
  • G. Henkelman and H. Jònsson, “Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points,” J. Chem. Phys., Vol. 113, no. 22, pp. 9978–85, 2000.
  • W. A. Crichton, M. Mezouar, G. Monaco, and S. Falconi, “Phosphorus: New in situ powder data from large-volume apparatus,” Powder Diffract., Vol. 18, no. 02, pp. 155–8, 2003.
  • Y. Takao and A. Morita, “Electronic structure of black phosphorus: Tight binding approach,” Physica B+C, Vol. 105, no. 1, pp. 93–98, 1981.
  • B. G. Streetman and S. K. Banerjee, “Solid state electronic devices,” in Prentice-Hall Series in Solid State Physical Electronics. New Delhi: Pearson Prentice Hall, p. 211, 2009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.