93
Views
1
CrossRef citations to date
0
Altmetric
Articles

A Monolithic Low Noise Channelized Active Bandpass Filter Using GaAs 0.15 µm Technology

, &

REFERENCES

  • S. Darfeuille, Z. Sassi, B. Barelaud, L. Billonnet, B. Jarry, H. Marie, N. T. Luan Le, and P. Gamand, “A fully-differential 2GHz tunable recursive bandpass filter on silicon,” Ger. Microw. Conf., Ulm, vol. 2005, pp. 102–105, Apr. 2005.
  • S. Darfeuille, R. Gomez-Garcia, B. Barelaud, L. Billonnet, B. Jarry, H. Marie, and P. Gamand, “A novel 2GHz tunable differential three-branch channelized bandpass filter integrated on silicon,” GAAS Symp., vol. 2005, pp. 1–4, 2005.
  • H. Lee, T. Chung, H. Seo, I. Choi, and B. Kim, “A wideband differential low-noise-amplifier with IM3 harmonics and noise canceling,” IEEE Microw. Wirel. Compon. Lett., vol. 25, no. 1, pp. 46–48, 2014.
  • S. Toufani and M. Dousti, “Improved T-shaped gate double heterojunction AlGaN/GaN/InGaN/GaN HEMT-based wideband flat LNA,” IETE J. Res., vol. 62, pp. 488–492, 2015.
  • A. K. Kamal, S. C. Gupta, N. K. Agrawal, and K. Singh, “Design of band-pass wideband microwave filters in X-band and their use as time-delay filters,” IETE J. Res., vol. 22, pp. 723–727, 2015.
  • S. V. Krishnamurthy, K. El-Sankary, and E. El-Masry, “Noise-cancelling CMOS active inductor and its application in RF band-pass filter design,” Int. J. Microw. Sci. Technol., vol. 2010, Article ID 980957, pp. 1–8, 2010.
  • Y.-S. Hwang, S.-F. Wang, S.-C. Yan, and J.-J. Chen, “An inductorless wideband noise-cancelling CMOS low noise amplifier with variable-gain technique for DTV tuner application,” Int. J. Electron. Commun.(AEU), vol. 64, pp. 1009–1014, 2010.
  • S. Arshad, R. Ramzan, K. Muhammad, and Q.-ul. Wahab, “A sub-10 mW, noise cancelling, wideband LNA for UWB applications,” Int. J. Electron. Commun. (AEÜ), vol. 69, pp. 109–118, 2015.
  • S. S. A. Saleh and N. Masoumi, “Wide-tuning-range, low-phase-noise quadrature ring oscillator exploiting a novel noise canceling technique,” Int. J. Electron. Commun. (AEU), vol. 66, pp. 372–379, 2012.
  • J. Shim, T. Yang, and J. Jeong, “Design of low power CMOS ultra wideband low noise amplifier using noise canceling technique,” Microelectron. J., vol. 44, no. 9, pp. 821–826, 2013.
  • B. M. Jafari and M. Yavari, “A UWB CMOS low-noise amplifier with noise reduction and linearity improvement techniques,” Microelectron. J., vol. 46, no. 2, pp. 198–206, 2015.
  • B. Menbari, M. Dousti, and H. Hajghassem, “A wide range, high yield and good performance pHEMT switch for MMIC phase shifter,” Int. J. Electron., vol. 101, no. 11, pp. 1467–1477, 2014.
  • A. Marzuki, A. Y. Md. Shakaff, and Z. Saulic, “A 1.5 V, 0.85-13.35 GHZ MMIC low noise amplifier design using optimization technique,” IETE J. Res., vol. 55, no. 6, pp. 309–314, 2009.
  • B. Menbari, M. Dousti and H. Hajghassem, “A wide range monolithic pHEMT SPDT switch,” Microw Opt. Technol. Lett., vol. 56, no. 6, pp. 1454–1458, 2014.
  • L. Kamoun, P. Dueme, E. Kerherve, J.-P. Plaze, and B. Godara, “A tunable and reconfigurable MMIC active filter in GaAs technology,” Analog Integr. Circ. Sig. Process., vol. 79, no. 1, pp. 83–94, 2014.
  • S. Darfeuille, Z. Sassi, B. Barelaud, L. Billonnet, B. Jarry, H. Marie, N. T. Luan Le, and P. Gamand, “A differential-based single-ended 2 GHz low-noise recursive filter on silicon,” GAAS Symp., vol. 12, pp. 447–450, 2004.
  • M. Dousti, B. Delacressonniere, F. Temcamani, and J. L. Gautier, “New design approach for active filter using MMIC technology,” Microw. Opt. Technol. Lett., vol. 19, no. 1, pp. 66–69, Sept. 1998.
  • S.-W. Chen, J.-W. Wu, J.-D. Wu, and J.-S. Li, “Tunable active bandpass filter design,” IEEE Electron. Lett., vol. 47, no. 18, pp. 1019–1021, 2011.
  • A.Dinh and J.Ge, “A Q-enhanced 3.6-GHz, tunable, sixth-order bandpass filter using 0.18μm CMOS,” VLSI Des., vol. 2007, no. 3, pp. 1–9, July 2007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.