134
Views
2
CrossRef citations to date
0
Altmetric
Articles

Design of Low Noise, Flat Gain CMOS-based Ultra-wideband Low Noise Amplifier for Cognitive Radio Application

, &

REFERENCES

  • J. Mitola and G. Q., Jr. Maguire, “Cognitive radio: making software radios more personal,” IEEE Pers. Commun., vol. 6, no. 4, pp. 13–18, 1999.
  • J. Shim, T. Yang, and J. Jeong, “Design of low power CMOS ultra wide band low noise amplifier using noise cancelling technique,” Microelectron. J., vol. 44, no. 9, pp. 821–826, 2013.
  • B. Razavi, “Cognitive radio design challenges and techniques.” IEEE J. Solid-State Circuits, vol. 45 no. 8, pp. 1542–1553, 2010.
  • C.-F. Liao and S.-I. Liu, “A broadband noise-cancelling CMOS LNA for 3.1 – 10.6 GHz UWB receivers,” IEEE J. Solid-State Circuits, vol. 42, no. 2, pp. 329–339, 2007.
  • J. Kim, S. Hoyos, and J. Silva-Martinez, “Wideband common-gate CMOS LNA employing dual negative feedback with simultaneous noise, gain, and bandwidth optimization,” IEEE Trans. Microwave Theory Tech., vol. 58, no. 9, pp. 2340–2351, 2010.
  • K. Moez, and M. I. Elmasry, “A low-noise CMOS distributed amplifier for ultra-wide-band applications,” IEEE Trans. Circuits Syst. Express Briefs, vol. 55, no. 2, pp. 126–130, 2008.
  • A. Marzuki, A. Y. Md. Shakaff, and Z. Sauli, “A 1.5V, 0.85-13.35 GHZ MMIC low noise amplifier design using optimization technique,” IETE J. Res., vol. 55, no. 6, pp. 309–314, 2009.
  • W.-K, Chong, H. Ramiah, G.-H. Tan, V. Nandini, and K. Jeevan. “Design of ultra-low voltage integrated CMOS based LNA and mixer for ZigBee application,” AEU – Int. J. Electron. Commun., vol. 68, no. 2, pp. 138–142, 2014.
  • S. Neda and N. Abrolreza, “A highly linear CMOS low noise amplifier for K-band applications,” Int. J. Electron., vol. 101, no. 12, pp. 1607–1620, 2014.
  • Y.Y. Tey, H. Ramiah, and Norlaili Mohd. Nor, “A high gain and low noise common source amplifier for cognitive radio application,” in IEEE International RF and Microwave Conference (RFM), Sarawak, 2015, pp. 11–17.
  • D. K. Shaeffer and T. H. Lee, “A 1.5-V, 1.5-GHz CMOS low noise amplifier.” IEEE J. Solid-State Circuits, vol. 32, no. 5, pp. 745–759, 1997.
  • A. J. Scholten, L. F. Tiemeijer, R. van Langevelde, R. J. Havens, A. T. A. Zegers-van Duijnhoven, and V. C. Venezia, “Noise modeling for RF CMOS circuit simulation,” IEEE Trans. Electron Devices, vol. 50, no. 3, pp. 618–632, 2003.
  • A. J. Scholten, H. J. Tromp, L. F. Tiemeijer, R. van Langevelde, R. J. Havens, P. W. H. De Vreede, R. F. M. Roes, P. H. Woerlee, A. H. Montree, and D. B. M. Klaassen, “Accurate thermal noise model for deep-submicron CMOS,” Electron Devices Meeting, 1999. IEDMN 99. Technical Digest. International, Dec, 1999.
  • A. Ansari and M. Yavari, “A very wideband low noise amplifier for cognitive radios,” in 18th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Beirut, Dec. 2011, pp. 623–626.
  • K. L. Soon, H. Ramiah, and Y. Y. Tey, “A 3.0-10.0 GHz UWB low-noise amplifier with forward body bias technique.” IETE J. Res., vol. 62, no. 1, pp. 91–99, 2016.
  • H. Alavi-Rad, S. Ziabakhsh, S. Ziabakhsh, and M. C. E. Yagoub, “A 0.9V CMOS 3-5 Ghz broadband flat gain low-noise amplifier for ultra-wide band receivers.” Can. J. Elect. Comput. Eng., vol. 36, no. 2, pp. 87–91, 2013.
  • Z. Abolfazl, and A. Amir, “A 130 nm wideband fully differential linear low noise amplifier.” Microelectron. J., vol. 46, no. 9, pp. 825–833, 2015.
  • Z. Abolfazl and A. Amir, “A dual-band common-gate LNA using active post distortion for mobile WiMAX.” Microelectron. J., vol. 45, no. 7, pp. 921–929, 2014.
  • A. Sana, R. Rashad, M. Khurram, and W. Qamar-ul, “A sub-10mW, noise cancelling, wideband LNA for UWB applications.” AEU – Int. J. Electron. Commun., 2014.
  • H.-K Chiou and H.-T. Chou, “An ultra-low power v-band source-driven down-conversion mixer with low-loss and broadband asymmetrical broadside-coupled balun in 90-nm CMOS technology.” IEEE Trans. Microwave Theory Tech., vol. 61, no. 7, pp. 2620–2631, 2013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.