93
Views
1
CrossRef citations to date
0
Altmetric
Articles

On-Chip Meander Line N-Well Resistor with Shielded Ground Conductor for Q-Factor Improvement

&

REFERENCES

  • O. Tession, B. I'Orgueilleuse, F. F. Barbier, and  Vimount, “Meander resistor,” U.S. Patent 8 258 916, Sep. 4, 2012.
  • C. Wang and N. Y. Nam, “Optimization of NiCr thin film resistor on semi-insulating-GaAs substrate in advanced integrated passive device process,” IETE J. Res., Vol. 58, no. 4, pp. 279–83, Jul. 2012.
  • C. An, J. Xie, W. Peng, Y. C. Zeng, and X. L. Jin, “A 10-bit CMOS capacitive and resistive D/A converter integrated with self-adjusted reference circuit,” IETE J. Res., Vol. 59, no. 4, pp. 442–6, Jul. 2013.
  • M. R. Rudra, S. Gazabare, and R. J. Pieper, “Predicting limits for memristor on-off resistances consistent with linear drift model,” IETE J. Res., Vol. 60, no. 1, pp. 42–9, Jun. 2014.
  • R. Murji and M. J. Deen, “A scalable mender-line resistor model for silicon RFIC's,” IEEE Trans. Electron Devices, Vol. 49, no.1, pp. 187–90, Jan. 2002.
  • R. Murji and M. J. Deen, “Accurate modeling and parameter extraction for meander-line n-well resistors,” IEEE Trans. Electron Devices, Vol. 52, no 7, pp. 1364–9, Jul. 2005.
  • R. A. Pucel, Nores for Lectures Presented in Course on Microwave Circuit Design II – Nonlinear Circuits. Berkeley, CA: University California Press, 1984.
  • H. Y. Yoo, R. K. Maharjan, and N. Y. Kim, “An X-band InGaP/GaAs hetero-junction bipolar transistor based microwave integrated circuit differential voltage controlled oscillator for satellite communications,” IETE J. Res., Vol. 56, no. 6, pp. 340–5, Nov. 2010.
  • C. H. Wang, J. Jin, and F. Yu, “A CMOS 2-11 GHz continuous variable gain UWB LNA,” IETE J. Res., Vol. 56, no. 6, pp. 367–72, Nov. 2010.
  • S. Nejadhasan, E. Abiri, R. Dastanian, and M. R. Salehi, “A low power and low LIR regulator for passive RFID tag in 0.18 μm CMOS technology,” IETE J. Res., Vol. 61, no. 4, pp. 372–81, Mar. 2015.
  • S. C. Du, W. B. Huang, C. H. Wang, H. X. Yin, and Z. W. Liang, “A single-chip highly efficient CMOS class-e power amplifier for WLAN applications,” IETE J. Res., Vol. 59, no. 2, pp. 762–7, Sep. 2013.
  • H. Shaman, “Compact microstrip bandpass filter for radars and wireless communication,” IETE J. Res., Vol. 59, no. 5, pp. 496–9, Sep. 2013.
  • R. Bhattacharya, R. Gupta, A. Basu, K Rawat, and S. K. Koul, “A fully integrated dual-band CMOS power amplifier using a variable switched interstage matching network,” IETE J. Res., Vol. 60, no. 2, pp. 139–44, Jun. 2014.
  • F. Johannsmann, R. Henderson, G. Sommer, T. Myers, M. Petras, S. Korf, M. Miller, W. John, and H. Reichl, “Parameterized RF models of embedded resistor components using EM simulation in LTCC substrates,” Microw. Symp. Dig., Vol. 3, pp. 1545–8, May 2002.
  • D. H. Elan and J. Y. Ahn, “Measurements of high Q On-chip inductor for wireless applications,” Sci. Technol. KORUS, Vol. 10, pp. 761–4, Sep. 2005.
  • S. Saad, M. Mhiri, A. B. Hammadi, and K. Besbes “A new low-power, high-Q, wide tunable CMOS active inductor for RF applications,” IETE J. Res., Vol. 62, no. 2, pp. 265–73, Dec. 2015.
  • M. Pfost, H. Rein, and T. Holzwarth, “Modeling substrate effects in the design of high speed Si-bipolar IC's,” IEEE J. Solid-State Circuits, Vol. 31, no. 10, pp. 1493–501, Oct. 1996.
  • H. M. Hsu, J. Z. Chang, and H. C. Chien, “Coupling effect of on-chip inductor with variable metal width,” IEEE Microw. Wirel. Compon. Lett., Vol. 17, pp. 498–500, Jul. 2007.
  • A. K. Palit, K. K. Duganapalli, and W. Anheier, “Influence of resistive bridging fault on crosstalk coupling effects in on-chip aggressor-victim interconnects,” in IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems, Arlington, VA, 2006, pp. 336–44.
  • D. C. Pander, “EMP coupling to overhead transmission lines,” IETE Tech. Rev., Vol. 9, no. 6, pp. 419–32, Nov. 1992.
  • H. Ramiah, J. Kanesan, and Z. A. Zulkifli , “Design of SIPC based LC-QVCO in 0.18 1/4m CMOS technology and the impact of coupling factor, K,” IETE J. Res., Vol. 58, no. 1, pp. 42–9, Jan. 2012.
  • T. Holtij, M. Schwarz, A. Kloes, and B.Iñíguez, “2D analytical calculation of the parasitic source/drain resistances in DG-MOSFETs using the conformal mapping technique,” IETE J. Res., Vol. 58, no. 3, pp. 205–13, Jun. 2012.
  • H. M. Liu, Z. B. Wang, and S. J. Fang, “Trans directional coupler with capacitor shunted ground defected coupled CPWs and inductor loaded ACPWs for weak coupling applications,”J. Electromagnet. Waves Appl., Vol. 27, no. 1, pp. 104–16, Jan. 2013.
  • W. Zhang, J. Mao, and X. Sun, “Patch antenna array embedded on a high impedance ground plane,” J. Electromagnet. Waves Appl., Vol. 19, no. 15, pp. 2007–14, Jan. 2005.
  • C. P. Yue and S. S Wong,“ On-chip spiral inductors with patterned ground shields for Si-based RF IC's,” IEEE J. Solid-State Circuits, Vol. 33, no. 5, pp. 743–52, May 1998.
  • P. N. Lagoia Fonseca and L. C. Kretly, “High q-factor monolithic inductor for RF devices using double ground shield,” in Proceedings of the 7th International Caribbean Conference on Devices, Circuits and Systems, Cancun, Mexico, Jun. 2008, pp. 1–4.
  • R. Svitek, A. S. Klein, M. Clifford, and S. Raman, “Development of scalable models for patterned-ground-shield inductors in SiGe BiCMOS technology,” in IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, Atlanta, GA, Sep. 2004, pp. 1–4.
  • C. C. Chen, L. C. Wang, and S. A. Ho, “Comparative layout study of stacked CMOS synthetic quasi-TEM lines separated by the meshed ground shield and its application to 180 hybrid design,” IEEE Microw. Wirel. Compon. Lett., Vol. 21, no. 6, pp. 289–91, Jun. 2011.
  • G. G. Johnstone and J. H. B. Deane, “Calculation of coupling gap and fringing capacitances in coupled rectangular bars between ground planes,” Int. J. Electron., Vol. 78, no. 4, pp. 729–41, Nov. 1994.
  • R. V. Staden, K. Jackman, C. J. Fourie, and P. Febvre, “Influence of the superconducting ground plane on the performance of RSQF cells,” IEEE Trans. Appl. Superconduct., unpublished.
  • Sonnet Software, “Sonnet high frequency electromagnetic software reference”. [ Online]. Available: https://www.sonnetsoftware.com/resources.
  • K. Murata, T. Hosaka, and Y. Sugimoto, “Effect of a ground shield of a silicon on-chip spiral inductor,” in Microwave Conference, Asia-Pacific, Sydney, Australia, Dec. 2000, pp. 177–80.
  • S. J. Han, J. H. Jeong, K. J. Son, and Y. Yun, “A study on basic RF characteristics of transmission lines employing various types of ground structures on silicon substrate for a decision of optimal periodic ground structure,” in Proceedings of the Asia-Pacific Microwave Conference, Seoul, South Korea, Nov. 2013, pp. 414–6.
  • X. Sun, G. Carchon, Y. Kita, K. Chiba, T. Tani, and W. De Raedt, “Experimental analysis of above-IC inductor performance with different patterned ground shield configurations and dummy metals,” in 36th European Microwave Conference, Manchester, Sep. 2006, pp. 40–43.
  • K. Suzuki, “Parasitic capacitance of submicrometer MOSFETs,” IEEE Trans. Electron. Devices, Vol. 46, no. 9, pp. 1895–900, Sep. 1999.
  • I. J. Bahl, Lumped Elements for RF and Microwave Circuits. Artech House Microwave Library, 2003.
  • M. Sucher, “Handbook of Microwave and Measurements,” in Proceedings of the IEEE, Vol. 53. Brooklyn, NY: Polytechnic Press of the Polytechnic Institute of Brooklyn, 1963.
  • M. B. Steer, Microwave and RF Design: A Systems Approach. Herndon, VA: SciTech Publishing Incorporated, 2010.
  • D. M. Pozar, Microwave Engineering. 4th ed. Hoboken, NJ: Wiley, 2005.
  • P. N. Lagoia Fonseca and L. C. Kretly, “RF integrated inductor: Improving Q-factor with double ground shield for BiCMOS technology,” in International Conference on Microwave and Millimeter Wave Technology, ICMMT, Nanjing, China, Vol. 2, Apr. 2008, pp. 580–3.
  • K. Schimpf, B. Benna, and D. Proetel, “A new approach to characterize substrate losses of On-Chip inductors,” in International Conference on Microelectronic Test Structures (ICMTS), Kobe, Japan, Mar. 2001, pp. 115–8.
  • M. Yao, X. L. Zhang, and C. Y. Zhao, “Impact of skin effect, resistive and dielectric losses on the input voltage waveforms of current estimation for ULSI interconnects,” in IEEE International Conference on Communication, Circuits and Systems (ICCCAS), Chengdu, China, Vol. 1, Nov. 2013, pp. 413–6.
  • S. Mei and Y. Ismail, “Modeling skin effect with reduced decoupled R-L circuits,” in International Symposium Circuits and Systems (ISCAS), Bangkok, Thailand, Vol. 4, Mar. 2003, pp. 588–91.
  • S. Z. Mei and Y. I. Ismail, “Modeling skin and proximity effects with reduced realizable RL circuits,”IEEE Trans. VLSI Syst., Vol. 12, pp. 437–47, Apr. 2004.
  • A. F. Horn III, J. W. Reynolds, P. A. LaFrance, and J. C. Rautio, “Effect of conductor profile on the insertion loss, phase constant and dispersion in thin high frequency transmission lines,” in Design Conference, Rogers Corporation, USA, May 2010.
  • C. Tu, J. F. Bao, and Y. J. Du, “An investigation into the effect of the bias line on the insertion loss of RF-MEMS tunable filter,” in Proceedings of the Microwave Conference (CJMW), Hangzhou, China, May 2011, pp. 1–4.
  • D. N. P. Thalakotuna, L. Matekovits, K. P. Esselle and M. Heimlich, “Effect of active device insertion losses on the electromagnetic bandgap characteristics of a tunable 1D periodic structure in the S band,” in IEEE International Symposium on Antennas and Propagation (APSURSI), Spokane, WA, Aug. 2011, pp. 1808–11.
  • V. Alessandrini, H. Fanchiotti, C. A. Garcia Canal, and H. Vucetich, “The skin effect in multiconductor systems,” Int. J. Electron., Vol. 40, pp. 57–63, Feb. 2007.
  • P. K. Mahanta, P. Adhikari, and K. A. Rocky, “Skin effect analysis for carob nano material based interconnects at high frequency,” in IEEE International Conference on Informatics, Electronics & Vision (ICIEV), Dhaka, Bangladesh, Aug. 2013, pp. 1–6.
  • K. Blattenberger, RF Café, 1996-2016. Available: http://www.rfcafe.com/references/electrical/skin-depth.htm.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.