128
Views
5
CrossRef citations to date
0
Altmetric
Articles

Segmentation of MR Images of the Brain to Detect WM, GM, and CSF Tissues in the Presence of Noise and Intensity Inhomogeneity

, &

REFERENCES

  • S. Gudise , G. B. Kande , and T. Satya Savithri , “An efficient computational approach for the detection of MR brain tissues in the presence of noise and intensity inhomogeneity,” J. Biomim. Biomater. Biomed. Eng. , Vol. 33, no. 1, pp. 65–79, Jul. 2017.
  • Y. Zhou , W.-R. Shi , W. Chen , Y.-L. Chen , Y. Li , L.-W. Tan , and D.-Q. Chen , “Active contours driven by localizing region and edge-based intensity fitting energy with application to segmentation of the left ventricle in cardiac CT images,” Neurocomputing , Vol. 156, pp. 199–210, May 2015.
  • N. Sharma and L. M. Aggarwal , “Automated medical image segmentation techniques,” J. Med. Phys ., Vol. 35, no. 1, pp. 3–14, Jan. 2010.
  • Z. Ma , J. M. R. S. Tavares , and R. M. Natal Jorge , “A review on the current segmentation algorithms for medical images”, in 1st International Conference on Imaging Theory and Applications , Portugal , 2009, pp. 135–40.
  • Z. Ma , J. M. R. S. Tavares , R. N. Jorge , and T. Mascarenhas , “A review of algorithms for medical image segmentation and their applications to the female pelvic cavity,” Comput. Methods Biomech. Biomed. Eng. , Vol. 13, no. 2, pp. 235–46, Aug. 2010.
  • R. B. Oliveira , M. E. Filho , Z. Ma , J. P. Papa , A. S. Pereira , and J. M. R. S. Tavares , “Computational methods for the image segmentation of pigmented skin lesions: A review,” Comput. Methods Programs Biomed. , Vol. 131, pp. 127–41, Apr. 2016.
  • M. Filho , Z. Ma , and J. M. R. S. Tavares , “A review of the quantification and classification of pigmented skin lesions: From dedicated to hand-held devices,” J. Med. Syst. , Vol. 39, no. 11, Article177, Nov. 2015.
  • D. S. Jodas , A. S. Pereira , and J. M. R. S. Tavares , “A review of computational methods applied for identification and quantification of atherosclerotic plaques in images,” Expert Syst. Appl ., Vol. 46, pp. 1–14, Mar. 2016.
  • P. C. T. Gonçalves , J. M. R. S. Tavares , and R. M. Natal Jorge , “Segmentation and simulation of objects represented in images using physical principles,” Comput. Model. Eng. Sci. , Vol. 32, no. 1, pp. 45–55, 2008.
  • C. Feng , D. Zhao , and M. Huang , “Segmentation of longitudinal brain MR images using bias correction embedded fuzzy c-means with non-locally spatio-temporal regularization,” J. Vis. Commun. Image Represent ., Vol. 38, pp. 517–29, Jul. 2016.
  • C. Feng , D. Zhao , and M. Huang , “Segmentation of ischemic stroke lesions in multi-spectral MR images using weighting suppressed FCM and three phase level set,” in International Workshop on Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries , Munich, Germany, 2015, pp. 233–45.
  • Y. Xia , Z. Ji , and Y. Zhang , “Brain MRI image segmentation based on learning local variational Gaussian mixture models,” Neurocomputing , Vol. 204, pp. 189–97, Sep. 2016.
  • Z. Ji , Y. Xia , Q. Sun , Q. Chen , and D. Feng , “Adaptive scale fuzzy local gaussian mixture model for brain mr image segmentation,” Neurocomputing , Vol. 134, pp. 60–9, Jun. 2014.
  • X. Chen , Y. Zhu , F. Li , Z.-Y. Zheng , E. C. Chang , and J. Ma , “Accurate segmentation of touching cells in multi-channel microscopy images with geodesic distance based clustering,” Neurocomputing , Vol. 149, pp. 39–47, Feb. 2015.
  • F. Zhao , “Fuzzy clustering algorithms with self-tuning non-local spatial information for image segmentation,” Neurocomputing , Vol. 106, pp. 115–25, Apr. 2013.
  • B. Ayerdi , I. Marqu´es , and M. Gran˜a , “Spatially regularized semisupervised ensembles of extreme learning machines for hyperspectral image segmentation,” Neurocomputing , Vol. 149, pp. 373–86, Feb. 2015.
  • H. Chang , Z. Chen , Q. Huang , J. Shi , and X. Li , “Graph-based learning for segmentation of 3D ultrasound images,” Neurocomputing , Vol. 151, pp. 632–44, Mar. 2015.
  • S. Dai , K. Lu , J. Dong , Y. Zhang , and Y. Chen , “A novel approach of lung segmentation on chest CT images using graph cuts,” Neurocomputing , Vol. 168, pp. 799–807, Nov. 2015.
  • X. Wang , J. Shan , Y. Niu , L. Tan , and S.-X. Zhang , “Enhanced distance regularization for re-initialization free level set evolution with application to image segmentation,” Neurocomputing , Vol. 141, pp. 223–35, Oct. 2014.
  • S. Zhou , J. Wang , S. Zhang , Y. Liang , and Y. Gong , “Active contour model based on local and global intensity information for medical image segmentation,” Neurocomputing , Vol. 186, pp. 107–18, Apr. 2016.
  • X.-F. Wang , H. Min , and Y.-G. Zhang , “Multi-scale local region based level set method for image segmentation in the presence of intensity inhomogeneity,” Neurocomputing , Vol. 151, pp. 1086–98, Mar. 2015.
  • M. Attique , G. Gilanie , Hafeez-Ullah , M. S. Mehmood , M. S. Naweed , M. Ikram , J. A. Kamran , and A. Vitkin , “Colorization and automated segmentation of human T2 MR brain images for characterization of soft tissues,” PLoS ONE , Vol. 7, no. 3, e33616, Mar. 2012 Available: https://doi.org/10.1371/journal.pone.0033616
  • G. Gilanie , M. Attique , Hafeez-Ullah , S. Naweed , E. Ahmed , and M. Ikram ,” Object extraction from T2 weighted brain MR image using histogram based gradient calculation,” Pattern Recognit. Lett ., Vol. 34, no. 12, pp. 1356–63, Sep. 2013.
  • M. A. Balafar , A. R. Ramli , M. I. Saripan , and S. Mashohor , “Review of brain MRI image segmentation methods,” Artif. Intell. Rev ., Vol. 33, no. 3, pp. 261–74, Mar. 2010.
  • D. L. Pham , C. Xu , and J. L. Prince , “Current methods in medical image segmentation,” Annu. Rev. Biomed. Eng. , Vol. 2, no. 1, pp. 315–37, Aug. 2000.
  • Gerig , R. Kikinis , O. Kubler , and F. A. Jolesz , “Nonlinear anisotropic filtering of MRI data,” IEEE Trans. Med. Imaging , Vol. 11, no. 2, pp. 221–32, Jun. 1992.
  • A. F. de Araujo , C. E. Constantinou , and J. M. R. S. Tavares , “Smoothing of ultrasound images using a new selective average filter,” Expert Syst. Appl. , Vol. 60, pp. 96–106, Oct. 2016.
  • A. F. de Araujo , C. E. Constantinou , and J. M. R. S. Tavares , “New artificial life model for image enhancement,” Expert Syst. Appl. , Vol. 41, no. 13, pp. 5892–906, Oct. 2014.
  • C. A. S. J. Gulo , H. F. de Arruda , A. F. de Araujo , A. C. Sementille , and J. M. R. S. Tavares , “Efficient parallelization on GPU of an image smoothing method based on a variational model,” J. Real-Time Image Proc ., Vol. 12, pp. 1–13, Jul. 2016. doi:10.1007/s11554-016-0623-x.
  • N. Malmurugan , A. Nagappan , Z. C. Alex , V. Krishnaveni , and T. G. George , “Mammographic enhancement algorithm using balanced multiwavelet transform for deetction of microcalcification,” in Proceedings of ICIS 2005, University of Petronas , Malaysia , Dec. 2005.
  • P. Perona and J. Malik , “Scale space and edge detection using anisotropic diffusion,” IEEE Trans. Pattern Anal. Machine Intell. , Vol. 12, no. 7, pp. 629–39, Jul. 1990.
  • J. M. R. S. Tavares , “Analysis of biomedical images based on automated methods of image registration,” in Lecture Notes in Computer Science, Reneta P. Barneva, Valentin E. Brimkov, Piotr Kulczycki, and João Manuel R. S. Tavares, Eds. Vol. 8887. Cracow, Poland: Springer, 2014, pp. 21–30.
  • J. M. R. S. Tavares , “Computer image registration techniques applied to nuclear medicine images,” in Computational and Experimental Biomedical Sciences: Methods and Applications , Lecture Notes in Computational Vision and Biomechanics , João Manuel R. S. Tavares and R. M. Natal Jorge, Eds. Vol. 21. Cham: Springer, 2015, pp. 173–91.
  • F. P. M. Oliveria and J. M. R. S. Tavares , “Medical image registration: A review,” Comput. Methods Biomech. Biomed. Eng. , Vol. 17, no. 2, pp. 73–93, 2014.
  • W. Wells , E. Grimson , R. Kikinis , and F. Jolesz , “Adaptive segmentation of MRI data,” IEEE Trans. Med. Imaging , Vol. 15, no. 4, pp. 429–42, Aug. 1996.
  • D. Pham and J. Prince , “Adaptive fuzzy segmentation of magnetic resonance images,” IEEE Trans. Med. Imaging , Vol. 18, no. 9, pp. 737–52, Sep. 1999.
  • D. Pham , “Spatial models for fuzzy clustering,” Comput. Vis. Image Underst. , Vol. 84, no. 2, pp. 285–97, Nov. 2001.
  • B. R. Condon , J. Patterson , and D. Wyper , “Image nonuniformity in magnetic resonance imaging: Its magnitude and methods for its correction,” Br. J. Radiol. , Vol. 60, no. 709, pp. 83–7, Jan. 1987.
  • A. Simmons , P. S. Tofts , G. J. Barker , and S. R. Arrdige , “Sources of intensity nonuniformity in spin echo images at 1.5 t,” Magn. Reson. Med. , Vol. 32, no. 1, pp. 121–8, Jul. 1994.
  • D. A. G. Wicks , G. J. Barker , and P. S. Tofts , “Correction of intensity nonuniformity in MR images of any orientation,” Magn. Reson. Imaging , Vol. 11, no. 2, pp. 183–96, 1993.
  • P. A. Narayana , W. W. Brey , M. Kulkarni , and C. L. Sivenpiper , “Compensation for surface coil sensitivity variation in magnetic resonance imaging,” Magn. Reson. Imaging , Vol. 6, no. 3, pp. 271–4, 1988.
  • M. Styner , C. Brechbuhler , G. Szekely , and G. Gerig , “Parametric estimate of intensity inhomogeneities applied to MRI,” IEEE Trans. Med. Imaging , Vol. 19, no. 3, pp. 153–65, Mar. 2000.
  • V. Leemput , K. Maes , D. Vandermeulen , and P. Suetens , “Automated model-based bias field correction of MR images of the brain,” IEEE Trans. Med. Imaging , Vol. 18, no. 10, pp. 885–96, Oct. 1999.
  • B. Johnston , M. S. Atkins , B. Mackiewich , and M. Anderson , “Segmentation of multiple sclerosis lesions in intensity corrected multispectral MRI,” IEEE Trans. Med. Imaging , Vol. 15, no. 2, pp. 154–69, 1996.
  • B. Dawant , A. Zijdenbos , and R. Margolin , “Correction of intensity variations in MR images for computer-aided tissues classification,” IEEE Trans. Med. Imaging , Vol. 12, no. 4, pp. 770–81, 1993.
  • O. Salvado , C. Hillenbrand , and D. Wilson , “Correction of intensity inhomogeneity in MR images of vascular disease,” in IEEE Engineering in Medicine and Biology Society , Shanghai, China, 2005, pp. 4302–5.
  • C. Li , R. Huang , Z. Ding , C. Gatenby , D. Metaxas , and J. Gore , “A variational level set approach to segmentation and bias correction of medical images with intensity inhomogeneity,” Proc. Med. Image Comput. Comput. Aided Interv. , Vol. LNCS 5242, pp. 1083–91, Sep. 2008.
  • B. Likar , M. Viergever , and F. Pernus , “Retrospective correction of MR intensity inhomogeneity by information minimization,” IEEE Trans. Med. Imaging , Vol. 20, no. 12, pp. 1398–410, Dec. 2001.
  • U. Vovk , F. Pernus , and B. Likar , “A review of methods for correction of intensity inhomogeneity in MRI,” IEEE Trans. Med. Imaging , Vol. 26, no. 3, pp. 405–21, Feb. 2007.
  • M. Bhatia and S. Gharge , “Segmentation of brain MR image using fuzzy local Gaussian mixture model,” in 2014 International Conference on Advances in Communication and Computing Technologies , Mumbai, India, Aug. 2014, pp. 1–5.
  • C. Feng , D. Zhao , and M. Huang , “Image segmentation and bias correction using local inhomogeneous iNtensity clustering (LINC): A region-based level set method,” Neurocomputing , Vol. 219, pp. 107–29, Jan. 2017.
  • C. Huang and L Zeng , “An active contour model for the segmentation of images with intensity inhomogeneities and bias field estimation,” PLoS ONE , Vol. 10, no. 4, e0120399, Apr. 2015. doi:10.1371/journal.
  • W.-Q. Deng , X.-M. Li , X. Gao , and C.-M. Zhang , “A modified fuzzy C-means algorithm for brain MR image segmentation and bias field correction,” J. Comput. Sci. Technol. , Vol. 31, no. 3, pp. 501–11, May 2016.
  • C. Li , R. Huang , Z. Ding , J. Gatenby , D. N. Metaxas , and J. C. Gore , “A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI,” IEEE Trans. Image Process. , Vol. 20, no. 7, pp. 2007–16, Jul. 2011.
  • Available: http://brainweb.bic.mni.mcgill.ca/brainweb/.
  • C. Li , J. C. Gore , and C. Davatzikos , “Multiplicative intrinsic component optimization (MICO) for MRI bias field estimation and tissue segmentation,” Magn. Reson. Imaging , Vol. 32, no. 7, pp. 913–23, Apr. 2014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.