443
Views
9
CrossRef citations to date
0
Altmetric
Articles

Journey of Visual Prosthesis with Progressive Development of Electrode Design Techniques and Experience with CMOS Image Sensors: A Review

ORCID Icon &

REFERENCES

  • G. E. Loeb , “Neural prosthetic interfaces with the nervous system,” Trends Neurosci. , Vol. 12, pp. 195–201, 1989. doi:10.1016/0166-2236(89)90071-4.
  • A. Tiwari and R. H. Talwekar , “Review of progressive development of CMOS imagers for Visual Prosthesis and new aspects,” J. Adv, Res. Dynamical Control Syst., Special Issue Envir., Eng. Energy , Vol. 9, pp. 1334–48, Sp–14/2017.
  • L. B. Merabet , “Building the Bionic Eye: An Emerging Reality and Opportunity,” Prog. Brain Res. , Vol. 192, pp. 3–15, 2011. http://doi.org/10.1016/B978-0-444-53355-5.00001-4.
  • P. M. Lewisa , H. M. Acklanda , A. J. Lowery , and J. V. Rosenfeld , “Restoration of vision in blind individuals using bionic devices: A review with a focus on cortical visual prostheses,” Brainresearch , Vol. 1595, pp. 51–73, 2015.
  • J. N. Burghartz , T. Engelhardt , H. G. Graf , C. Harendt , H. Richter , C. Scherjon , et al., “CMOS imager technologies for biomedical Applications,” Dig. Tech. Pap - IEEE Int. Solid-State Circuits Conf. , Vol. 51, pp. 142–4, 2008. doi:10.1109/ISSCC.2008.4523097.
  • G. S. Brindley , “Sensory effects of electrical stimulation of the visual and paravisual cortex in man,” Handb. Sens. Physiol. , pp. 583–93, 1973.
  • J. D. Weiland , M. S. Humayun , G. Dagnelie , E. De Juan , R. J. Greenberg , and N. T. Iliff , “Understanding the origin of visual percepts elicited by electrical stimulation of the human retina,” Graefe's Arch. Clin. Exp. Ophthalmol. , Vol. 237, pp. 1007–13, 1999. doi:10.1007/s004170050337.
  • W. Franks , I. Schenker , P. Schmutz , and A. Hierlemann , “Impedance characterization and modeling of electrodes for biomedical applications,” IEEE Trans. Biomed. Eng. , Vol. 52, 1295–302. 2005. doi:10.1109/TBME.2005.847523.
  • W. Liu , W. Fink , M. Tarbell , and M. Sivaprakasam , “Image processing and interface for retinal visual prostheses,” Proc - IEEE Int. Symp. Circ uits Syst. , Vol. 3, pp. 2927–30, 2005. doi:10.1109/ISCAS.2005.1465240.
  • R. A. Normann , E. M. Maynard , K. Shane , and D. J. W. Guillory , Cortical Imp lants Blind. , Vol. 33, pp. 54–9, 1996.
  • R. A. Normann , E. M. Maynard , P. J. Rousche , and D. J. Warren , “A neural interface for cortical Vision prosthesis,” Vision Res. , Vol. 39, pp. 2577–87, 1999. doi:10.1016/S0042-6989(99)00040-1.
  • J. Rizzo , J. Loewenstein , and J. Wyatt , “Development of an Epiretinal Electronic Visual Prosthesis,” Retin Degener Dis. Exp . Ther. , pp. 463–9, 1999. doi:10.1007/978-0-585-33172-0_43.
  • H. G. Sachs and V. P. Gabel , “Retinal replacement - The development of microelectronic retinal prostheses - Experience with subretinal implants and new aspects,” Graefe's Arch. Clin. Exp. Ophthalmol. , Vol. 242, pp. 717–23, 2004. doi:10.1007/s00417-004-0979-7.
  • H. N. Schwahn and W. Jakob , “Studies on the feasibility of a subretinal visual prosthesis: Data from Yucatanmicropig and rabbit,” Graefe's Arch. Clin. Exp. Ophthalmol , Vol. 239, pp. 961–7, 2001. doi:10.1007/s004170100368.
  • E. Fossum , “Active pixel sensors: Are CCDs dinosaurs?” Proc. SPIE , Vol. 1900, pp. 2–14, 1993. doi:10.1117/12.148585.
  • E. R. Fossum , “CMOS image sensors: Electronic camera on a chip,” Proc. Int. Electron Devices Meet. , pp. 17–25, 1995. doi:10.1109/IEDM.1995.497174.
  • M. Bigas , E. Cabruja , J. Forest , and J. Salvi , “Review of CMOS image sensors,” Microelectronics J. , Vol. 37, pp. 433–51, 2006. doi:10.1016/j.mejo.2005.07.002.
  • B. Hoefflinger , High-Dynamic-Range (HDR) Vision: Microelectronics, Image Processing, Computer Graphics . Springer, 2007, pp. 1–178.
  • J. F. Rizzo and J. Wyatt , “REVIEW : Prospects for a Visual Prosthesis,” Neuroscience , Vol. 3, pp. 251–62, 1997. doi:10.1177/107385849700300413.
  • JFr. Rizzo , J. Wyatt , and M. Humayun , et al. “Retinal prosthesis, an encouraging first decade with major challenges ahead,” in Opthalmology , Vol. 108, pp. 13–14, 2001.
  • E. Zrenner , A. Stett , S. Weiss , R. B. Aramant , E. Guenther , K. Kohler , et al., “Can subretinal microphotodiodes successfully replace degenerated photoreceptors,” Vision Res. , Vol. 39, pp. 2555–67, 1999. doi:10.1016/S0042-6989(98)00312-5.
  • E. Zrenner , “Will retinal implants restore vision?” Science , Vol. 295, no. 80, pp. 1022–5, 2002. doi:10.1126/science.1067996.
  • L. B. Merabet , J. F. Rizzo , A. Amedi , D. C. Somers , and A. Pascual-leone , “What blindness can tell us about seeing again: Merging neuroplasticity and neuroprostheses,” Nat. Rev. Neurosci. , Vol. 6, pp. 71–7, 2005. doi:10.1038/nrn1586.
  • J. Weiland , W. Fink , M. Humayun , W. Liu , D. Rodger , Y.-C. Tai , et al., “Progress towards a high-resolution retinal prosthesis,” Conf. Proc. IEEE Eng. Med. Biol. Soc. , Vol. 7, pp. 7373–5, 2005. doi:10.1109/IEMBS.2005.1616215.
  • J. Niu , Y. Liu , Q. Ren , Y. Zhou , Y. Zhou , and S. Niu , “Vision implants: An electrical device will bring light to the blind,” Sci. China, Ser. F Inf. Sci. , Vol. 51, pp. 101–10, 2008. doi:10.1007/s11432-007-0072-z.
  • A. Kusnyerik , K. Karacs , and A. Zarandy , “Vision restoration and vision chip technologies,” Procedia Comput. Sci. , Vol. 7, pp. 121–4, 2011. doi:10.1016/j.procs.2011.12.036.
  • J. D. Weiland , A. K. Cho , and M. S. Humayun , “Retinal prostheses: Current clinical results and future needs,” Ophthalmology , Vol. 118, pp. 2227–37, 2011. doi:10.1016/j.ophtha.2011.08.042.
  • Y. H. L. Luo and L. Da Cruz , “A review and update on the current status of retinal prostheses (bionic eye),” Br. Med. Bull. , Vol. 109, pp. 31–44. doi:10.1093/bmb/ldu002, 2014.
  • E. Margalit , M. Maia , J. D. Weiland , R. J. Greenberg , G. Y. Fujii , G. Torres , et al., “Retinal prosthesis for the blind,” Surv. Ophthalmol. , Vol. 47, pp. 335–56, n.d..
  • USA.gov D of H and HS (link is external) | TNI of H (link is external) | , Facts About Age-Related Macular Degeneration n.d., Accessed September 1, 2015 https://nei.nih.gov/health/maculardegen/armd_facts.
  • What Is Retinitis Pigmentosa ?, American Academy of Ophthalmology n.d., Accessed December 15, 2016. https://www.aao.org/eye-health/diseases/what-is-retinitis-pigmentosa.
  • R. Henry , M. Deckert , V. Guruviah , and B. Schmidt , “Review of neuromodulation techniques and technological limitations,” IETE Tech. Rev. , Vol. 33, pp. 368–77, 2015. doi:10.1080/02564602.2015.1106926
  • B. Y. Ragnar , “The distribution of excitation and inhibition in single fiber-response from a polarized retina,” J. Physiology , Vol. 105, pp. 45–53, 1946.
  • K. Motokawa and M. Ebe , “Selective stimulation of color receptors with alternating currents,” Science , Vol. 116, pp. 7–9, 1951. doi:10.1126/science.116.3004.92.
  • R. W. Rodieck , “Quantitative analysis of cat retinal ganglion cell response to visual stimuli,” Vision Research , Vol. 5, pp. 583–601, 1965.
  • G. S. L. W. Bnndley , “The sensations produced by electrical stimulation of the visual cortex,” J. Physi ol. , Vol. 196, pp. 479–93, 1968.
  • A. M. Potts , J. Inoue , and D. Buffum , “The Electrically Evoked Response of the Visual System (EER),” Invest. Ophthalmol. Vis. Sci. , Vol. 7, pp. 269–78, 1968.
  • A. M. Potts and J. Inoue , “The electrically evoked response (EER) of the visual system II. Effect of adaptation and retinitis pigmentosa,” Invest. Ophthalmol. Vis. Sci. , Vol. 8, pp. 605–12, 1969.
  • A. M. Potts and J. Inoue , “The electrically evoked response of the visual system (EER) III,” Further Contrib. Origin EER , Vol. 9, pp. 814–9, 1970.
  • W. H. Dobelle , M. G. Mladejovsky , and J. P. Girvin , “Artifical vision for the blind: Electrical stimulation of visual cortex offers hope for a functional prosthesis,” Science , Vol. 183, no. 80, pp. 440–4, 1974. doi:10.1126/science.183.4123.440.
  • H. Asanuma , A. Arnold , and P. Zarzecki , “Brain further study on the excitation of pyramidal tract cells by intra cortical microstimulation,” Exp Brain Res , Vol. 461, pp. 443–61, 1976.
  • S. Molotchnikoff , H. B. Barlow , H. B. Barlow , R. M. Hill , W. R. Levick , H. B. Barlow , et al., “Transient Responses of Rabbit Retinal Ganglion Cells to Photic and Electrical Stimuli,” Can. J. Neurol. Sci. / J. Can. Des. Sci. Neurol. , Vol. 3, pp. 73–9, 1976. doi:10.1017/S0317167100026044.
  • G. L. Fisher , B. A. Prentice , G. L. Fisher , J. E. Lammert , G. Raabe , J. Mccann , et al., MrHPBC , Vol. 904, pp. 1974–7, 1980.
  • A. Kaneko and T. Saito , “Ionic mechanisms underlying the responses of off-center bipolar cells in the carp retina. II. Studies on responses evoked by transretinal current stimulation,” J. Gen. Physiol. , Vol. 81, pp. 603–12, 1983.
  • S. B. Brummer and M. J. Turner , “Electrochemical Considerations for Safe Electrical Stimulation of the Nervous System with Platinum Electrodes,” IEEE Trans. Biomed. Eng. , Vol. BME-24, pp. 59–63, 1977. doi:10.1109/TBME.1977.326218.
  • A. Scheiner , J. T. Mortimer , and U. Roessmann , “Imbalanced biphasic electrical stimulation: Muscle tissue damage,” Ann. Biomed. Eng. , Vol. 18, pp. 407–25, 1990. doi:10.1007/BF02364157.
  • W. H. Dobelle , J. Turkel , D. C. Henderson , and J. R. Evans , “Mapping the representation of the visual field by electrical stimulation of human visual cortex,” Am. J. Ophthalmol. , Vol. 88, pp. 727–35, 1979. doi:10.1016/0002-9394(79)90673-1.
  • A. G. Leventhal , R. W. Rodieck , and B. Dreher , “Retinal ganglion cell classes in the Old World monkey: Morphology and central projections,” Science . Vol. 213, no. 80, pp. 1139–42, 1981. doi:10.1126/science.7268423.
  • K. Takahashi and M. Murakami , “Calcium action potential in ON-OFF transient amacrine cell of the carp retina,” Brain. Res. , Vol. 456, pp. 29–37, 1988.
  • J. G. Flannery , D. B. Farber , A. C. Bird and D. Bok , “Degenerative changes in a retina affected with autosomal dominant retinitis pigmentosa,” Invest. Ophthalmol. Vis. Sci. , Vol. 30, pp. 191–211, 1989.
  • M. Bak , J. P. Girvin , F. T. Hambrecht , C. V. Kufta , G. E. Loeb , and E. M. Schmidt , “Communication: Visual sensations produced by intracortical microstimulation of the human occipital cortex,” Medical and Biological Engineering and Computing, 28. Med. Biol. Eng. Comput. , Vol. 28, pp. 257–9, 1990. doi:10.1007/BF02442682.
  • M. F. Marmor , G. Aguirre , G. Arden , E. Berson , D. G. Birch , J. A. Boughman , et al., “Retinitis Pigmentosa: A Symposium on Terminology and Methods of Examination,” Ophthalmology , Vol. 90, pp. 126–31, 1983. doi:10.1016/S0161-6420(83)34587-5.
  • J. T. Mortimer , C. N. Shealy , and C. Wheeler , “Experimental nondestructive electrical stimulation of the brain and spinal cord,” J. Neurosurg. , Vol. 32, pp. 553–59, 1970. doi:10.3171/jns.1970.32.5.0553.
  • S. F. Ronner , W. E. Foote , and S. E. Feldon , “Activation of single cells in cat visual cortex by electrical stimulation of the cortical surface,” Exp. Neurol. , Vol. 70, pp. 47–64, 1980. doi: 0014-4886(80)90005-9 [pii].
  • S. F. Ronner and B. G. Lee , “Excitation of Visual Cortex Neurons by Local lntracortical Microstimulation,” Exp. Neurol. , Vol. 81, pp. 376–95, 1983.
  • M. Humayun , Y. Sato , R. Propst , and E. de Juan , “Can potentials from the visual cortex be elicited electrically despite severe retinal degeneration and a markedly reduced electroretinogram?” Ger. J. Ophthalmol. , Vol. 4, pp. 57–64, 1995.
  • Michelson , “R P, michelson1986method,” Method Apparat. Vis. Prosthesis , U.S. Patent 4628933A, Dec 16, 1986.
  • R. Eckmiller , “Learing Retina Implants with Epiretinal Contacts,” Ophthalmic Res. , Vol. 29, pp. 281–9, 1997.
  • M. Narayanan Nadig , “Development of a silicon retinal implant: Cortical evoked potentials following focal stimulation of the rabbit retina with light and electricity,” Clin. Neurophysiol. , Vol. 110, pp. 1545–53, 1999. doi:10.1016/S1388-2457(99)00027-9.
  • P. Walter , P. Szurman , M. Vobig , et al., “Successful long-term implantation of electrically inactive epiretinal microelectrode arrays in rabbits,” Retina , Vol. 19, pp. 546–52, 1999.
  • A. E. Grumet , J. L. Wyatt , and J. F. Rizzo , “Multi-electrode stimulation and recording in the isolated retina,” J. Neurosci. Methods , Vol. 101, pp. 31–42, 2000.
  • T. Yagi , Y. Ito , H. Kanda , S. Tanaka , M. Watanabe , and Y. Uchikawa , “Hybrid retinal implant: Fusion of engineering and neuroscience,” in Systems, Man, and Cybernetics, 1999 . IEEE SMC '99 Conference Proceedings. 1999 IEEE International Conference on , Tokyo , Vol. 4, pp. 382–5, 1999. doi:10.1109/ICSMC.1999.812432.
  • H. J. Sheedlo , V. Gaur , L. X. Li , et al., “Transplantation to the diseased and damaged retina,” Trends Neurosci. , Vol. 14, pp. 347–50, 1991.
  • H. C. Stronks and G. Dagnelie , “The functional performance of the Argus II retinal prosthesis,” Expert Rev. Med. Dev. , Vol. 11, no. 1, pp. 23–30, 2014. http://doi.org/10.1586/17434440.2014.862494.
  • Ho, et al., “3-Year Results of Argus II Retinal Prosthesis System, “Long-Term Results from an Epiretinal Prosthesis to Restore Sight to the Blind”,” Ophthalmology , Vol. 122, no. 8, pp. 1547–54, Aug. 2015.
  • A. Y. Chow and V. Y. Chow , “Subretinal electrical stimulation of the rabbit retina,” Neurosci. Lett. , Vol. 225, pp. 13–6, 1997. doi:10.1016/S0304-3940(97)00185-7.
  • M. J. Seiler , and R. B. Aramant , “Intact sheets of fetal retina transplanted to restore damaged rat retinas,” Invest. Ophthalmol. Vis. Sci. , Vol. 39, pp. 2121–31, 1998.
  • G. Peyman , A. Y. Chow , C. Liang , et al., “Subretinal semiconductor microphotodiode array,” Ophthalmic Surg. Lasers. , Vol. 29, pp. 234–41, 1998.
  • M. S. Humayun , E. De Juan , J. D. Weiland , et al., “Pattern electrical stimulation of the human retina,” Vision Res. , Vol. 39, pp. 2569–76, 1999. doi:10.1016/S0042-6989(99)00052-8.
  • R. A. Normann , E. M. Maynard , P. J. Rousche , and D. J. Warren , “A neural interface for cortical Vision prosthesis,” Vision Res. , Vol. 39, pp. 2577–87, 1999. doi:10.1016/S0042-6989(99)00040-1.
  • A. Stett , W. Barth , S. Weiss , et al., “Electrical multisite stimulation of the isolated 25 chicken retina,” Vision Res. , Vol. 40, pp. 1785–95, 2000. doi:10.1016/S0042-6989(00)00005-5.
  • J. F. Rizzo , J. Wyatt , J. Loewenstein , et al., “Perceptual Efficacy of Electrical Stimulation of Human Retina with a Microelectrode Array during Short-Term Surgical Trials,” Investig. Ophthalmol. Vis. Sci. , Vol. 44, pp. 5362–9, 2003. doi:10.1167/iovs.02-0817.
  • M. Ortmanns , F. Gekeler , K. Kobuch , H. N. Schwahn , A. Stett , and E. Z. Kei Shinoda , “Subretinal electrical stimulation of the rabbit retina with acutely implanted electrode arrays”, Graefes Arch Clin Exp Ophthalmol , Vol. 242, pp. 587–96, 2004.
  • F. Gekeler , K. Kobuch , H. N. Schwahn , et al., “Subretinal electrical stimulation of the rabbit retina with acutely implanted electrode arrays,” Graefe's Arch. Clin. Exp. Ophthalmol. , Vol. 242, pp. 587–96, 2004. doi:10.1007/s00417-004-0862-6.
  • A. Y. Chow , V. Y. Chow , K. H. Packo , et al., “The artificial silicon retina microchip for the treatment of vision loss from retinitis pigmentosa,” Arch. Ophthalmol. , Vol. 122, pp. 460–9, 2004. doi:10.1001/archopht.122.4.460.
  • H. Kanda , T. Morimoto , T. Fujikado , et al., “Electrophysiological Studies of the Feasibility of Suprachoroidal-Transretinal Stimulation for Artificial Vision in Normal and RCS Rats,” Investig. Ophthalmol. Vis. Sci. , Vol. 45, pp. 560–66, 2004. doi:10.1167/iovs.02-1268.
  • K. Nakauchi , T. Fujikado , H. Kanda , et al., “Transretinal electrical stimulation by an intrascleral multichannel electrode array in rabbit eyes,” Graefe's Arch. Clin. Exp. Ophthalmol. , Vol. 243, pp. 169–74, 2005. doi:10.1007/s00417-004-1060-2.
  • H. G. Sachs , T. Schanze , M. Wilms , et al., “Subretinal implantation and testing of polyimide film electrodes in cats,” Graefe's Arch. Clin. Exp. Ophthalmol. , Vol. 243, pp. 464–8, 2005. doi:10.1007/s00417-004-1049-x.
  • H. G. Sachs , T. Schanze , U. Brunner , et al., “Transscleral implantation and neurophysiological testing of subretinal polyimide film electrodes in the domestic pig in visual prosthesis development,” J. Neural. Eng. , Vol. 2, pp. S57–64, 2005. doi:10.1088/1741-2560/2/1/008.
  • E. Zrenner , R. Wilke , F. Gekeler , et al. , “Subretinal microelectrode arrays allow blind retinitis pigmentosa patients to recognize letters and combine them to Words,” Proc. R. Soc. B , pp. 1–9, 2009. doi:10.1098/rspb.2010.1747.
  • R. J. Jensen and J. F. Rizzo , “Thresholds for activation of rabbit retinal ganglion cells with a subretinal electrode,” Exp. Eye. Res. , Vol. 83, pp. 367–73, 2006. doi:10.1016/j.exer.2006.01.012.
  • E. Zrenner , R. Wilke , T. Zabel , et al., “Psychometric Analysis of Visual Sensations Mediated by Subretinal Microelectrode Arrays Implanted Into Blind Retinitis Pigmentosa Patients,” Invest. Ophthalmol. Vis. Sci. , Vol. 48, pp. 659–659, 2007.
  • T. Fujikado , T. Morimoto , H. Kanda , et al., “Evaluation of phosphenes elicited by extraocular stimulation in normals and by suprachoroidal-transretinal stimulation in patients with retinitis pigmentosa,” Graefe's Arch. Clin. Exp. Ophthalmol. , Vol. 245, pp. 1411–9, 2007. doi:10.1007/s00417-007-0563-z.
  • K. Stingl et al., , “Subretinal Visual Implant Alpha IMS – Clinical trial interim report,” Vision Res. , Vol. 111, pp. 149–60, 2015. https://doi.org/10.1016/j.visres.2015.03.001.
  • Z. M. Hafed , et al., “Oculomotor behavior of blind patients seeing with a subretinal visual Implant,” Vision Res. , Vol. 118, pp. 119–31, 2016. https://doi.org/10.1016/j.visres.2015.04.006.
  • R. Baratta , M. Ichie , S. K. Hwang , and M. Solomonow , “Orderly stimulation of skeletal muscle motor units with tripolar nerve cuff electrode,” IEEE Trans. Biomed. Eng. , Vol. 36, pp. 836–43, 1989. doi:10.1109/10.30809.
  • M. Meister , J. Pine , D. A. Baylor , “Multi-neuronal signals from the retina: Acquisition and analysis,” J. Neurosci. Methods , Vol. 51, pp. 95–106, 1994. doi:10.1016/0165-0270(94)90030-2.
  • W. Nisch , J. Bock , U. Egert , et al., “A thin film microelectrode array for monitoring extracellular neuronal activity in vitro,” Biosens Bioelect. , Vol. 9, pp. 737–41, 1994. doi:10.1016/0956-5663(94)80072-3.
  • C. Veraart , C. Raftopoulos , J. T. Mortimer , et al., “Visual sensations produced by optic nerve stimulation using an implanted self-sizing spiral cuff electrode,” Brain Res. , Vol. 813, pp. 181–6, 1998.
  • T. Stieglitz , “Biomedical microimplants for sensory and motor neuroprostheses,” in 2006 IEEE International Symposium on Circuits and Systems, Island of Kos , pp. 2189–92, 2006. doi:10.1109/ISCAS.2006.1693053.
  • G. E. Tassicker and S. Hills , “Victoria, Australia Applicafion, Serial No. 463,507,” Retinal Stimul ., U.S. Patent 2760483 A, October 20, 1954.
  • B. Y. W. H. Dobelle , M. G. Mladejovsky , E. O. Avenue , and S. L. City , “Phosphenes produced by electrical stimulation of human occipital cortex and their application to the development of a prostheses for the blind,” J. Physiol. , Vol. 243, pp. 553–76, 1974.
  • Moore , “Nature Publishing Group,” Nature , Vol. 260, pp. 643–5, 1976.
  • W. W. Dawson and N. D. Radtke , “The electrical stimulation of the retina by indwelling electrodes,” Invest. Ophthalmol. Vis. Sci. , Vol. 16, pp. 249–52, 1977.
  • D. A. Pollen , “Responses of the single neurons to electrical stimulation of the Surface of the visual cortex,” Brain. Behav. Evol. , Vol. 14, pp. 67–86, 1977.
  • K. E. Jones , P. K. Campbell , and R. A. Normann , “A glass/silicon composite intracortical electrode array,” Ann. Biomed. Eng. , Vol. 20, pp. 423–37, 1992. doi:10.1007/BF02368134.
  • M. S. Humayun , E. de Juan , G. Dagnelie , et al., “Visual perception elicited by electrical stimulation of retina in blind humans,” Arch. Ophthalmol. , ( Chicago, Ill 1960) Vol. 114, pp. 40–6, 1996.
  • M. Humayun , R. Propst , E.De. Juan , K. McCormick , and D. Hickingbotham , “Bipolar surface electrical stimulation of the vertebrate retina,” Arch. Opthalmol. , Vol. 112, pp. 110–6, 1994.
  • E. M. Schmidt , M. J. Bak , F. T. Hambrecht , et al., “Feasibility of a visual prosthesis for the blind based on intracortica l microstimulation of the visual cortex,” Brain , Vol. 119, pp. 507–22, 1996.
  • P. J. Rousche and R. A. Normann , “Chronic intracortical microstimulation (ICMS) of cat sensory cortex using the utah intracortical electrode array,” IEEE Trans. Rehabil. Eng. , Vol. 7, pp. 56–68, 1999. doi:10.1109/86.750552.
  • W. Liu , M. Clements , S. C. Demacro , C. Hughes , E. McGcken , and M. S. Humayun , “Eugene de Juan JDW and RG, A Neuro-Stimulus Chip with Telemetry Unit for Retinal Prosthetic Device,” Vol. 35, pp. 1487–96, 2000.
  • J. Wyatt and J. Rizzo , “Ocular implants for the blind,” Spect. IEEE , Vol. 33, pp. 47–53, 1996. doi:10.1109/6.490056.
  • P. Troyk , M. Bak , J. Berg , et al., “A Model for Intracortical Visual Prosthesis Research,” Artif. Organs. , Vol. 27, pp. 1005–15, 2003. doi:10.1046/j.1525-1594.2003.07308.x.
  • E. Fernandez , A. Alfaro , J. M. Tormos , et al., “Mapping of the human visual cortex using image-guided transcranial magnetic stimulation,” Brain Res. Brain. Res. Protoc. , Vol. 10, pp. 115–24, 2002. doi:10.1016/S1385-299X(02)00189-7.
  • J. S. Hayes , V. T. Yin , D. Piyathaisere , et al., “Visually Guided Performance of Simple 27 Tasks Using Simulated Prosthetic Vision,” Artif. Organs. , Vol. 27, pp. 1016–28, 2003. doi:10.1046/j.15251594.2003.07309.x.
  • V. Chowdhury , J. W. Morley , and M. T. Coroneo , “Stimulation of the retina with a multi electrode extraocular visual prosthesis,” ANZ J. Surg. , Vol. 75, pp. 697–704, 2005. doi:10.1111/j.1445-2197.2005.03498.x.
  • J. Rizzo , J. Wyatt Jr , and L. Theogarajan , “Minimally invasive retinal prosthesis,” US Pat. , 6,976,998 Vol. 35, pp. 1723–32, 2006. doi:10.1109/ISSCC.2006.1696038.
  • H. Hammerle , U. Egert , A. Mohr , and W. Nisch , “Extracellular recording in neuronal networks with substrate integrated microelectrode arrays,” Biosens Bioelect. , Vol. 9, pp. 691–6, 1994. doi:10.1016/0956-5663(94)80067-7.
  • R. Eckhorn , A. Stett , T. Schanze , et al., “Physiological functional evaluation of retinal implants in animal models,” Ophthalmologe , Vol. 98, pp. 369–75, 2001.
  • K. Kohler , J. A. Hartmann , D. Werts , and E. Zrenner , “Histological studies of retinal degeneration and biocompatibility of subretinal implants,” Ophthalmologe, Vol. 98, pp. 364–8, 2001.
  • T. Morimoto , T. Fukui , K. Matsushita , et al., “Evaluation of residual retinal function by pupillary constrictions and phosphenes using transcorneal electrical stimulation in patients with retinal degeneration,” Graefe's Arch. Clin. Exp. Ophthalmol. , Vol. 244, pp. 1283–92. doi:10.1007/s00417-006-0260-3, 2006.
  • J. Ohta , T. Tokuda , K. Kagawa , et al., “Toward 1000-ch Electrode Array Based on Distributed Microchip Architecture for Retinal Prosthesis,” Proc. IEEE Int. Symp. Circuits. Syst. - ISCAS , Vol. 2006, pp. 4118–22, 2006. doi:10.1109/ISCAS.2006.1693535.
  • E. M. Maynard , C. T. Nordhausen , and R. A. Normann , “The Utah Intracortical Electrode Array: A recording structure for potential brain-computer interfaces,” Electroencephalogr Clin. Neurophysiol. , Vol. 102, pp. 228–39, 1997. doi:10.1016/S0013-4694(96)95176-0.
  • M. J. M. Pelgrom , A. C. J. Duinmaijer , and A. P. G. Welbers , “Matching Properties of MOS Transistors,” IEEE J. Solid-State Circuits. , Vol. 24, pp. 1433–39, 1989. doi:10.1109/JSSC.1989.572629.
  • S. Kempain , “Cmos image sensors:eclipsing ccds in visual information?” EDN , Vol. 42, pp. 101–2, 1997.
  • C.-H. Chen , H.-J. Tsai , K.-S. Huang , and H.-T. Liu , “Study for cross contamination between cmos image sensor and ic product,” IEEE/SEMI Adv. Semicond. Manuf. Conf. , pp. 121–3, 2001. doi:10.1109/ASMC.2001.925629.
  • A. Theuwissen , “Ccd or cmos image sensors for consumer digital still photography?” Int. Symp. VLSI Technol. Syst. Appl., Proc. Tech. Pap. , Vol. 2001, pp. 168–71, 2001.
  • H.-S. P. Wong , “CMOS image sensors-recent advances and device scaling considerations,” Int. Electron Devices M eet. , pp. 201–4, 1997. doi:10.1109/IEDM.1997.650332.
  • S. Rastogi , Valao. Fiete , R. Jhaveri , S. Mukherji , and M. Ravikanth , “Status and Trends in Molecular Electronics,” IETE Tech. Rev. , Vol. 19, no. 5, pp. 307–315, 2002. doi:10.1080/02564602.2002.11417045.
  • M. Hillebrand , N. Stevanovic , B. Hosticka , J. Conde , A. Teuner , and M. Schwarz , “High speed camera system using a CMOS image sensor,” Proc. IEEE Intell Veh. Symp. , Vol. 2000, pp. 656–61, 2000.
  • M. Schwarz , B. J. Hosticka , R. Hauschild , et al., “Hardware architecture of a neural net based retina implant for patients suffering from retinitis pigmentosa,” IEEE Int. Conf. Neural. Networks - Conf. Proc. , Vol. 2, pp. 653–8, 1996.
  • I. Shcherback and O. Yadid-Pecht , “Photoresponse analysis and pixel shape optimization for CMOS active pixel sensors,” IEEE Trans. Electron Devices , Vol. 50, pp. 12–8, 2003. doi:10.1109/TED.2002.806966.
  • M. Ortmanns , N. Linger , A. Rocke , et al., “A 232-channel visual prosthesis ASIC with production-compliant safety and testability,” Dig. Tech. Pap. - IEEE Int. Solid-State Circuits Conf. , pp. 152–4, 2007. doi:10.1109/ISSCC.2007.373633.
  • H. G. Graf , C. Harendt , T. Engelhardt , et al., “High dynamic range CMOS imager technologies for biomedical applications,” IEEE J. Solid-State Circuits , Vol. 44, pp. 281–9, 2009. doi:10.1109/JSSC.2008.2007437.
  • M. M. El-Desouki , D. Palubiak , M. J. Deen , Q. Fang , and O. Marinov , “A novel, high-dynamic-range, high-speed, and high-sensitivity CMOS imager using time-domain single-photon counting and avalanche photodiodes,” in IEEE Sensors Journal , Vol. 11, no. 4, pp. 1078–83, Apr. 2011. doi:10.1109/JSEN.2010.2058846.
  • C.-L. Lee and C.-C. Hsieh , “A 0.8-V 4096-Pixel CMOS Sense-and-Stimulus Imager for R etinal Prosthesis,” IEEE Trans. Electron Devices , Vol. 60, no. 3, pp. 1162–8, Mar. 2013. doi:10.1109/TED.2013.2238634.
  • M. H. Ghormishi and M. A. Karami , “Design and optimization of backside illuminated image sensor for epiretinal implants,” Comput. Electr. Eng. Vol. xxx, pp. xxx–xxx, 2014. https://doi.org/10.1016/j.compeleceng.2014.12.007.
  • X. Qian , H. Yu , S. Chen , and K. S. Low , “A high dynamic range CMOS image sensor with dualexposure charge subtraction scheme,” IEEE Sens. J. , Vol. 15, pp. 661–2, 2015. doi:10.1109/JSEN.2014.2365173.
  • M. Vatteroni , C. Cavallotti , M. Silvestri , et al., “CMOS image sensor with tunable dynamic range for catheter based endoluminal applications,” Sensors Actuators, A Phys. , Vol. 227, pp. 63–9, 2015. doi:10.1016/j.sna.2015.03.020.
  • I. Ansaripour and M. A. Karami , “Design and Simulations of an Energy Harvesting Capable CMOS Pixel for Implantable Retinal Prosthesis,” Sens Imag. , Vol. 18, pp. 18, 2017. doi:10.1007/s11220-017-0171-x.
  • C. A. Marquette , I. Lawrence , C. Polychronakos , and M. F. Lawrence , “Impedance basedDNAchip for direct?” Measurement. Talanta. , Vol. 56, pp. 763–8, 2002.
  • C. R. Wegener , and I. G. Keese , “Electric cell-substrate impedance sensing (ECIS) as a noninvasive means to monitor the kinetics of cell spreading to artificial surfaces,” Exp. Cell. Res., Vol. 259, pp. 158–66, 2000.
  • C. J. Barnstable , “Glutamate and GABA in retinal circuitry,” Curr. Opin. Neur obiol. , Vol. 3, pp. 520–5, 1993.
  • P. R. Singh , W. Liu , M. Sivaprakasam , M. S. Humayun , and J. D. Weiland , “A matched biphasic microstimulator for an implantable retinal prosthetic device,” in 2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512) , Vol. 4, pp. IV-1-4, 2004. doi: 10.1109/ISCAS.2004.1328925.
  • M. Sivaprakasam , W. Liu , M. S. Humayun , and J. D. Weiland , “A variable range bi-phasic current stimulus driver circuitry for an implantable retinal prosthetic device,” in IEEE Journal of Solid-State Circuits , Vol. 40, no. 3, pp. 763–71, Mar. 2005. doi:10.1109/JSSC.2005.843630.
  • A. E. Hadjinicolaou et al. , “Optimizing the electrical stimulation of retinal ganglion cells,” in IEEE Transactions on Neural Systems and Rehabilitation Engineering , Vol. 23, no. 2, pp. 169–78, Mar. 2015. doi:10.1109/TNSRE.2014.2361900.
  • K. N. Ahn , J. Y. Ahn , J. Kim , et al., “Effect of Stimulus Waveform of Biphasic Current Pulse on Retinal Ganglion Cell Responses in Retinal Degeneration (rd1) mice,” Korean J. Phys. Pharmacol. Off. J. Korean Physiol. Soc. Korean Soc. Pharmacol. , Vol. 19, no. 2, pp. 167–75, 2015. doi:10.4196/kjpp.2015.19.2.167.
  • M. E. Celik∗ and I. Karagoz , “Modelling of Stimulation Environment Using Monophasic Rectangle Pulse for Various Stimulation Parameters, Special issue of the International Conference on Computational and Experimental Science and Engineering (ICCESEN 2014),” Acta Phys. Pol. A , Vol. 128, Page B pp. 297–9, 2015. doi:10.12693/APhysPolA.128.B-297.
  • M. Eren , M. Celik , M. Ozden , G. Sobaci , and I. Karagoz , “An in Vitro Study for Analysing the Responses to Monophasic Pulses from Retinal Ganglion Cells,” Ophthalmologica . Vol. 232, pp. 40–1, 2014.
  • M. E. Çelika , M. Özdenb , İ. Karagöza , and G. Sobacic , “Rabbit Retinal Ganglion Cell Activation Thresholds in Response to Various Electrical Stimulation Waveforms using a Different Spatial Resolution Electrode Array,” Acta Phys. Pol. A , Vol. 131, pp. 1479–84, 2017. doi:10.12693/APhysPolA.131.1479.
  • M. Ghovanloo , “Switched-capacitor based implantable low-power wireless microstimulating systems,” in 2006 IEEE International Symposium on Circuits and Systems, Island of Kos , pp. 2197–200, 2006. doi:10.1109/ISCAS.2006.1693055.
  • M. Rasouli and L. S. Phee , “Energy sources and their development for application in medical devices,” Expert Rev. Med. Dev. Vol. 7, pp. 693–709, 2010.
  • A. Sanni , A. Vilches , and C. Toumazou ,. “Inductive and ultrasonic multi-tier interface for low-power, deeply implantable medical devices. IEEE Trans. Biomed,” Circuits Syst. , Vol. 6, pp. 297—308, 2012.
  • A. Abdo and M. Sahin , “Feasibility of neural stimulation with floating-light-activated microelectrical stimulators,” in IEEE Transactions on Biomedical Circuits and Systems , Vol. 5, no. 2, pp. 179–88, Apr. 2011. doi:10.1109/TBCAS.2011.2114882.
  • D. C. Ng , et al., “Wireless power delivery for retinal prostheses,” Conf. Proc. IEEE Eng. Me d. Biol. Soc. , pp. 8356–60, 2011. doi:10.1109/IEMBS.2011.6092061.
  • A. J. Lowery , “Introducing the Monash vision group's cortical prosthesis,” in 2013 IEEE International Conference on Image Processing , Melbourne, VIC , 2013, pp. 1536–9. doi:10.1109/ICIP.2013.6738316.
  • A. I. Al-Kalbani , M. R. Yuce , and J. M. Redouté , “Safe SAR levels in inductively powered brain implanted visual prostheses,” in International Symposium on Electromagnetic Compatibility - EMC EUROPE , Rome , 2012, pp. 1–6. doi:10.1109/EMCEurope.2012.6396784.
  • M. Kiani and M. Ghovanloo , “A 13.56-Mbps pulse delay modulation based transceiver for simultaneous near-field data and power transmission,” in IEEE Trans. on Biomed. Circuits and Syst., Vol. 9, no. 1, pp. 1–11, Feb. 2015. doi:10.1109/TBCAS.2014.2304956.
  • M. E. Çelik and İ. Karagöz , “The Effect of the Electrical Stimulation on Temperature Rise in the Retinal Tissue for Visual Pros theses,” Int. J. Comput. Elect. Eng. , Vol. 6, no. 4, pp. 369–72. Aug. 2014. doi:10.7763/IJCEE.2014.V6.855.
  • N. Gaspar , A. Sondhi , B. Evans , and K. Nikolic , “A low-power neuromorphic system for retinal implants and sensory substitution,” in 2016 IEEE Biomedical Circuits and Systems Conference (BioCAS) , Shanghai , pp. 78–81, 2016. doi:10.1109/BioCAS.2016.7833729.
  • R. Samba , T. Herrmann , and G. Zeck , “PEDOT-CNT coated electrodes stimulate retinal neurons at low voltage amplitudes and low charge densities,” J. Neural Eng. , Vol. 12, no. 1, p. 016014, 2015.
  • A. Shoval , C. Adams , M. David-Pur , M. Shein , Y. Hanein , and E. Sernagor , “Carbon nanotube electrodes for effective interfacing with retinal tissue,” Front. Neuroeng. , Vol. 2, p. 4, 2009.
  • S. F. Cogan , “Neural Stimulation and Recording Electrodes,” The Annual Review of Biomedical Engineering is online at bioeng.annualreviews.org, Annu. Rev. Biomed. Eng. , Vol. 10, pp. 275–309, 2008. doi:10.1146/annurev.bioeng.10.061807.160518.
  • C. G. Eleftheriou , J. B. Zimmermann , H. D. Kjeldsen , M. David-Pur , Y. Hanein , and E. Sernagor , “Carbon nanotube electrodes for retinal implants: A study of structural and functional integration over time,” Biomaterials , Vol. 112, pp. 108–21, 2017. https://doi.org/10.1016/j.biomaterials.2016.10.018.
  • R. J. Greenberg , T. J. Velte , M. S. Humayun , G. N. Scarlatis , and E. De Juan , “A computational model of electrical stimulation of the retinal ganglion cell,” IEEE Trans. Biomed. Eng., Vol. 46, no. 5, May 1999, pp. 505–14. doi:10.1109/10.759051.
  • H. Kasi , D. Crivelli , M. Lecchi , A. Perez Fornos , M. Pelizzone , D. Bertrand , and P. Renaud , “Modelling and microfabrication of a polyimide-based 3D tissue coupled electrodes for electrical stimulation in the chick retina,” in Proceedings of USGEB , pp. 76, 2008.
  • H. Kasi , B. Kolomiets , S. Picaud , J. A. Sahel , and P. Renaud , “A new flexible microfabricated Polyimide-based platinum electrodes For stimulation of rat retinal tissue in Vitro and recording using a multielectrode Array,” in Twelfth International Conference on Miniaturized Systems for Chemistry and Life Sciences October 12 - 16, San Diego, CA, USA , 2008, 978-0-9798064-1-4/μTAS2008/$20©2008CBMS.
  • H. Kasi , A. Bertsch , J. L. Guyomard , B. Kolomiets , S. Picaud , M. Pelizzone , and P. Renaud , “Simulations to study spatial extent of stimulation and effect of electrode-tissue gap in subretinal implants,” Med. Eng. Phys. , Vol. 33, no. 6, pp. 755–63, 2011 Jul. doi:10.1016/j.medengphy.2011.01.015. Epub 2011 Feb 26.
  • H. Kasi , W. Hasenkamp , G. Cosendai , A. Bertsch , and P. Renaud , “Simulation of epiretinal prostheses - Evaluation of geometrical factors affecting stimulation thresholds,” J. Neuro. Eng. Rehabilitation , Vol. 8, p. 44, 2011. doi:10.1186/1743-0003-8-44.
  • D. Tsai , S. Chen , D. A. Protti , J. W. Morley , G. J. Suaning , and N. H. Lovell , “Responses of retinal ganglion cells to extracellular electrical stimulation, from single cell to population,” Model Based Anal., PLoS ONE , Vol. 7, no. 12, e53357, Dec. 28, 2012. Available: https://doi.org/10.1371/journal.pone.005337.
  • M. E. Celik and I. Karagoz , “Modelling of Stimulation Environment Using Monophasic Rectangle Pulse for Various Stimulation Parameters, Special issue of the International Conference on Computational and Experimental Science and Engineering (ICCESEN 2014),” Acta Phys. Pol. A , Vol. 128, pp. 297–99, 2015. doi:10.12693/APhysPolA.128.B-297.
  • R.-P. Dorit , G. Beit-Yaakov , and Y. Hanein , “Electrical stimulation of different retinal components and the effect of asymmetric pulses,” J. Neurosci. Methods , Vol. 291, pp. 20–7, 2017. ISSN 0165-0270, https://doi.org/10.1016/j.jneumeth.2017.07.028. (http://www.sciencedirect.com/science/article/pii/S0165027017302716)
  • M. E. Çelik and İ. Karagöz , “A novel finite element method based retinal stimulation strategy to decrease stimulation threshold and electrode crosstalk,” J. Faculty Eng. Architect. Gazi Uni. , Vol. 32, no. 2, pp. 563–73, 2017. doi:10.17341/gazimmfd.322183.
  • A. Barriga-Rivera , T. Guo , C. Y. Yang , A. A. Abed , S. Dokos , N. H. Lovell , J. W. Morley , and G. J. Suaning , “High-amplitude electrical stimulation can reduce elicited neuronal activity in visual prosthesis,” Sci. Rep. , Vol. 7, p. 42682, 2017 Feb 17. doi:10.1038/srep42682.
  • A. Tiwari and A. K. Sahu , “An innovative approach of computational fault detection using design for testability of CP-PLL,” in Proceedings of the National Conference on Computing & Communications Systems , Durgapur , pp. 1–6, 2012. doi:10.1109/NCCCS.2012.6413033.
  • A. Tiwari , A. K. Shu , and G. R. Sinha , “Design for testability architecture using the existing elements of CP-PLL for digital testing application in VLSI ASCI design,” Int. J. VLSI Signal Process. Appl. , Vol. 2, no. 1, pp. 56–64, 2012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.