346
Views
4
CrossRef citations to date
0
Altmetric
Articles

An Online Dynamic Security Assessment in Power Systems Using RBF-R Neural Networks

ORCID Icon, ORCID Icon & ORCID Icon

References

  • P. Kundur, Power System Stability and Control. New York: McGraw Hill, 1994.
  • L. S. Moulin, A. A. Da Silva, M. A. El-Sharkawi, and R. J. Marks, “Support vector machines for transient stability analysis of large-scale power systems,” IEEE Trans. Power Systems, Vol. 19, no. 2, pp. 818–25, May 2004. doi: 10.1109/TPWRS.2004.826018
  • I. Genc, R. Diao, V. Vittal, S. Kolluri, and S. Mandal, “Decision tree-based preventive and corrective control applications for dynamic security enhancement in power systems,” IEEE Trans. Power Systems, Vol. 25, no. 3, pp. 1611–19, Aug. 2010. doi: 10.1109/TPWRS.2009.2037006
  • S. Rovnyak, S. Kretsinger, J. Thorp, and D. Brown, “Decision trees for real-time transient stability prediction,” IEEE Trans. Power Systems, Vol. 9, no. 3, pp. 1417–26, Aug. 1994. doi: 10.1109/59.336122
  • L. I. U. Youbo, L. I. U. Yang, L. I. U. Junyong, L. I. Maozhen, M. A. Zhibo, and G. Taylor, “High-performance predictor for critical unstable generators based on scalable parallelized neural networks,” Journal of Modern Power Systems and Clean Energy, Vol. 4, no. 3, pp. 414–26, 2016. doi: 10.1007/s40565-016-0209-4
  • R. Sunitha, S. K. Kumar, and A. T. Mathew, “Online static security assessment module using artificial neural networks,” IEEE Trans. Power Systems, Vol. 28, no. 4, pp. 4328–35, Nov. 2013.
  • D. J. Sobajic, and Y. H. Pao, “Artificial neural-net based dynamic security assessment for electric power systems,” IEEE Trans. Power Systems, Vol. 4, no. 1, pp. 220–8, Feb. 1989. doi: 10.1109/59.32481
  • A. L. Bettiol, A. Souza, J. L. Todesco, and J. R. Tesch, “Estimation of critical clearing times using neural networks,” in IEEE Power Tech Conf. Proceedings, Bologna, 2003, 6 pp.
  • D. Srinivasan, C. S. Chang, A. C. Liew, and K. C. Leong, “Power system security assessment and enhancement using artificial neural network,” in IEEE Energy Management and Power Delivery, Proceedings of EMPD’98, International Conf., 1998, pp. 582–7.
  • C. F. Kucuktezan, and V. I. Genc, “Dynamic security assessment of a power system based on probabilistic neural networks,” in IEEE PES Innovative Smart Grid Technologies Conf. Europe (ISGT Europe), 2010, pp. 1–6.
  • A. D. P. Lotufo, M. L. M. Lopes, and C. R. Minussi, “Sensitivity analysis by neural networks applied to power systems transient stability,” Electric Power Syst. Res., Vol. 77, no. 7, pp. 730–8, May 2007. doi: 10.1016/j.epsr.2005.09.020
  • I. B. Sulistiawati, M. Abdillah, and A. Soeprijanto, “Neural network based transient stability model to analyze the security of Java-Bali 500 kV power system,” in International Conference on Electrical Engineering and Informatics (ICEEI), 2011, pp. 1–6.
  • W. P. Ferreira, G. S. Maria do Carmo, A. P. Lotufo, and C. R. Minussi, “Transient stability analysis of electric energy systems via a fuzzy ART-ARTMAP neural network,” Electric Power Syst. Res., Vol. 76, no. 6, pp. 466–75, Apr. 2006. doi: 10.1016/j.epsr.2005.09.008
  • J. Fei, and T. Wang, “Adaptive fuzzy-neural-network based on RBFNN control for active power filter,” Int. J. Mach. Learn. Cyb., pp. 1–12, 2018. doi:10.1007/s13042-018-0792-y
  • J. Fei & C. Lu, “Adaptive fractional order sliding mode controller with neural estimator,” J. Franklin Inst., Vol. 355, no. 5, pp. 2369–91, 2018. doi: 10.1016/j.jfranklin.2018.01.006
  • Y. Chu, Fei, J., and S. Hou, “Dynamic global proportional integral derivative sliding mode control using radial basis function neural compensator for three-phase active power filter,” Trans. Inst. Meas. Control, Vol. 40, no. 12, pp. 3549–59, Aug. 2018. doi: 10.1177/0142331217726955
  • N. Srilatha, G. Yesuratnam, and M. S. Deepthi, “RBF neural network approach for security assessment and enhancement,” in T&D Conference and Exposition, 2014 IEEE PES, pp. 1–5.
  • B. Tan, J. Yang, X. Pan, J. Li, P. Xie, and C. Zeng, “Representational learning approach for power system transient stability assessment based on convolutional neural network,” J. Eng., Vol. 2017, no. 13, pp. 1847–50, 2017.
  • R. Zhang, Y. Xu, Z. Y. Dong, and K. P. Wong, “Post-disturbance transient stability assessment of power systems by a self-adaptive intelligent system,” IET Gener. Transm. Dis., Vol. 9, no. 3, pp. 296–305, 2015. doi: 10.1049/iet-gtd.2014.0264
  • M. Rouhani, and D. S. Javan, “Two fast and accurate heuristic RBF learning rules for data classification,” Neural Networks, Vol. 75, pp. 150–61, Mar. 2016. doi: 10.1016/j.neunet.2015.12.011
  • S. C. Wang, Interdisciplinary Computing in Java Programming. New York: Springer, 2012.
  • M. J. Orr, Introduction to Radial Basis Function Networks, 1996.
  • H. Peng, F. Long, and C. Ding, “Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy,” IEEE Trans. Pattern Anal. Mach. Intell., Vol. 27, no. 8, pp. 1226–38, Aug. 2005. doi: 10.1109/TPAMI.2005.159
  • G. Rogers, Power System Oscillations, Norwell, MA: Kluwer, 2000.
  • DSATools Dynamic Security Assessment Software [Online]. Available: http://www.dsatools.com/
  • MATLAB 6.1, The MathWorks Inc., Natick, MA, 2010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.