94
Views
8
CrossRef citations to date
0
Altmetric
Articles

Novel Subthreshold Modelling of Advanced On-Chip Graphene Interconnect Using Numerical Method Analysis

, &

References

  • G. Dhillon and N. Raghu, “Performance analysis of single-wall carbon nanotubes and copper as VLSI interconnect,” Int. J. Sci. Technol., vol. 9, no. 1, pp. 1–6, 2016.
  • J. Rabaey, Digital Integrated Circuits: A Design Perspective, 2nd ed. Berkeley: Prentice-Hall, 2004.
  • F. Liang, G. Wang, and H. Lin, “Modeling of crosstalk effect in MWCNT interconnect,” IEEE Trans. Electromagn. Compat., vol. 54, no. 1, pp. 133–139, 2012. doi: 10.1109/TEMC.2011.2172982
  • C. Xu, H. Li, and K. Banerjee, “Modeling, analysis and design of GNR interconnects,” IEEE Trans. Electron Devices, vol. 56, no. 8, pp. 1567–1578, 2009. doi: 10.1109/TED.2009.2024254
  • H. Li, C. Xu, N. Srivastava, and K. Banerjee, “Carbon nanomaterials for next-generation interconnects and passives: Physics, status, and prospects,” IEEE Trans. Electron Devices, vol. 56, no. 9, pp. 1799–1821, 2009. doi: 10.1109/TED.2009.2026524
  • A. K. Nishad and R. Sharma, “Analytical time domain models for performance optimization of multi-layer GNR interconnects,” IEEE J. Sel. Top. Quantum Electron., vol. 20, no. 1, pp. 1–8, 2014. doi: 10.1109/JSTQE.2013.2272458
  • A. K. Nishad and R. Sharma, “Self-consistent capacitance model for multiplayer graphene nanoribbon interconnects,” Macro Nano Lett, vol. 10, no. 8, pp. 404–407, 2015. doi: 10.1049/mnl.2015.0017
  • V. Kumar, S. Rakheja, and A. Naeemi, “Performance and energy-perbit modeling of multilayer graphene nanoribbon conductors,” IEEE Trans. Electron Devices, vol. 59, no. 10, pp. 2753–2761, 2012. doi: 10.1109/TED.2012.2208753
  • F. Yuan, CMOS Current-Mode Circuits for Data Communications. New York: Springer Publication, 2007.
  • Y. Ho, H. K. Chen, and C. Su, “Energy-effective sub-threshold interconnect design using high-boosting predrivers,” IEEE J. Emerg. Sel. Top. Circuits Syst., vol. 2, no. 2, pp. 307–313, 2012. doi: 10.1109/JETCAS.2012.2193841
  • R. Dhiman and R. Chandel, “Dynamic crosstalk analysis in coupled interconnects for ultra-low power applications,” Circuits Syst. Signal Process, vol. 34, pp. 21–40, 2015. doi: 10.1007/s00034-014-9853-y
  • 12. M. Sahoo and H. Rahaman, “An ABCD parameter based modeling and analysis of crosstalk induced effects in multilayer graphene nano-ribbon interconnects,” in Proc. IEEE Conference on Circuit and Systems, 2014.
  • N. S. Murthy and M. Kavicharan, “A survey on FDTD-based interconnect modeling,” J. Circuits Syst. Comput, vol. 24, no. 1, pp. 153001–32, 2015. doi: 10.1142/S0218126615300019
  • V. R. Kumar, B. K. Kaushik, and A. Patnaik, “Improved crosstalk noise modeling of MWCNT interconnects using FDTD technique, Microelectron. J., vol. 46, no. 12, pp. 1263–1268, 2015. doi: 10.1016/j.mejo.2015.10.009
  • D. K. Sharma, B. K. Kaushik, and R. K. Sharma, “Delay model for dynamically switching coupled RLC interconnects,” EPJ Appl. Phys., vol. 66, no. 1, pp. 1–6, 2014. doi: 10.1051/epjap/2014130375
  • X. C. Li, J. F. Mao, and M. Swaminathan, “Transient analysis of CMOS-gate-driven RLGC interconnects based on FDTD,” IEEE Trans. Comput. Aided Design Integr Circuits Syst, vol. 30, no. 4, pp. 574–583, 2011. doi: 10.1109/TCAD.2010.2095650
  • V. R. Kumar, B. K. Kaushik, and A. Patnaik, “An accurate model for dynamic crosstalk analysis of CMOS gate driven on-chip interconnects using FDTD method,” Microelectron. J., vol. 45, no. 4, pp. 441–448, 2014. doi: 10.1016/j.mejo.2014.02.004
  • V. Ramesh Kumar, A. Alam, B. K. Kaushik, and A. Patnaik, “An unconditionally stable FDTD model for crosstalk analysis of VLSI interconnects,” IEEE Trans. Compon. Packag. Manuf. Technol., vol. 5, no. 12, pp. 1810–1817, 2015. doi: 10.1109/TCPMT.2015.2494519
  • V. R. Kumar, B. K. Kaushik, and A. Patnaik, “An accurate FDTD model for crosstalk analysis of CMOS-gate-driven coupled RLC interconnects,” IEEE Trans. Electromagn. Compat., vol. 56, no. 5, pp. 1185–1193, 2014. doi: 10.1109/TEMC.2014.2305801
  • B. K. Kumar, V. R. Kumar, and A. Patnik, Crosstalk in Modern on-Chip Interconnect: A FDTD Approach. Singapore: Springer Brief in Applied Science and Technology, 2016.
  • Y. Agrawal, G. Kumar, and R. Chandel, “Comprehensive model for high-speed current-mode signaling in next generation MWCNT bundle interconnect using FDTD technique,” IEEE Trans. Nanotechnol., vol. 15, no. 4, pp. 590–598, 2016. doi: 10.1109/TNANO.2016.2558475
  • Y. Agrawal, R. Chandel, and M. Girish Kumar, “A novel unified model for copper and MLGNR interconnects using voltage and current-mode signaling schemes,” IEEE Trans. Electromagn. Compat., vol. 59, no. 1, pp. 217–227, 2017. doi: 10.1109/TEMC.2016.2587821
  • D. J. Comer and D. T. Comer, “Operating of analog MOS circuits in the weak moderate inversion,” IEEE Trans. Educ., vol. 47, no. 4, pp. 430–435, 2004. doi: 10.1109/TE.2004.825537
  • P. R. Gray, P. J. Hurst, S. H. Lewis, and R. G. Meyer, Analysis and Design of Analog Integrated Circuits, 4th ed. New York: Wiley, pp. 66–67, 2001.
  • Kane S. Yee, “Numerical solution of initial boundary value problem involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenna Propag., vol. 14, no. 3, pp. 302–307, May 1966. doi: 10.1109/TAP.1966.1138693
  • Y. Agrawal and R. Chandel, “Crosstalk analysis of current-modes signaling coupled RLC interconnects using FDTD technique,” IETE Techn. Rev., vol. 33, no. 2, pp. 148–159, 2016. doi: 10.1080/02564602.2015.1056258
  • Y. Agrawal, M. Girish, and R. Chandel, “A unified delay, power and crosstalk model for current mode signaling multiwall carbon nanotube interconnects,” Springer Circ Syst Signal Process, vol. 37, no. 4, pp. 1359–1382, 2018. doi: 10.1007/s00034-017-0614-6
  • Semiconductor Industry Association, International Technology Roadmap for Semiconductors (ITRS).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.