272
Views
11
CrossRef citations to date
0
Altmetric
Articles

Energy Harvesting from Human Biomechanical Energy for Health-monitoring Devices

&

References

  • H. Minamisawa, M. L. Smith, and B. K. Siesjö, “The effect of mild hyperthermia and hypothermia on brain damage following 5, 10, and 15 minutes of forebrain ischemia,” Ann. Neurol., Vol. 28, pp. 26–33, 1990. doi: 10.1002/ana.410280107
  • J. González-Alonso, C. Teller, S. L. Andersen, F. B. Jensen, T. Hyldig, and B. Nielsen, “Influence of body temperature on the development of fatigue during prolonged exercise in the heat,” J. Appl. Physiol., Vol. 86, pp. 1032–39, 1999. doi: 10.1152/jappl.1999.86.3.1032
  • D. G. Armstrong, K. Holtz-Neiderer, C. Wendel, M. J. Mohler, H. L. Kimbriel, and L. A. Lavery, “Skin temperature monitoring reduces the risk for diabetic foot ulceration in high-risk patients,” Am. J. Med., Vol. 120, pp. 1042–46, 2007. doi: 10.1016/j.amjmed.2007.06.028
  • J. Achten, and A. E. Jeukendrup , “Heart rate monitoring, applications and limitations,” Sports Med., Vol. 33, pp. 517–38, 2003. doi: 10.2165/00007256-200333070-00004
  • C. R. Cole, J. M. Foody, E. H. Blackstone, and M. S. Lauer, “Heart rate recovery after submaximal exercise testing as a predictor of mortality in a cardiovascularly healthy cohort,” Ann. Intern. Med., Vol. 132, pp. 552–555, 2000. doi: 10.7326/0003-4819-132-7-200004040-00007
  • L. Peter, N. Noury, and M. Cerny, “A review of methods for non-invasive and continuous blood pressure monitoring: Pulse transit time method is promising,” IRBM, Vol. 35, no. 5, pp. 271–82, 2014. doi: 10.1016/j.irbm.2014.07.002
  • A. V. Arundel, E. M. Sterling, J. H. Biggin, and T.D Sterling, “Indirect health effects of relative humidity in indoor environments,” Environ. Health Perspect., Vol.65, pp. 351–61, 1986.
  • A. K. Jaswal, B. Padmakumari, N. Kumar, and P. A. Kore, “Increasing trend in temperature and moisture induced heat index and its effect on human health in climate change scenario over the Indian sub-continent,” J. Clim. Change, Vol. 3, pp. 11–25, 2017. doi: 10.3233/JCC-170002
  • P. Oja, S. Titze, A. Bauman, B. de Geus, P. Krenn, B. Reger-Nash and T. Kohlberger, “Health benefits of cycling: a systematic review,” Scand. J. Med. Sci. Sports, Vol. 21, pp. 496–509, 2011. doi: 10.1111/j.1600-0838.2011.01299.x
  • A. Jhingan, and R.M Jhingan, “Effect of cycling on glycaemia, blood pressure, and weight in young individuals with type 2 diabetes,” JCDR, Vol. 11, 2017. doi:10.7860/JCDR/2017/28111.10162.
  • Z. Chai, N. Zhang, P. Sun, Y. Huang, C. Zhao, H. J. Fan, X. Fan, and W. Mai, “Tailorable and wearable textile devices for solar energy harvesting and simultaneous storage,” ACS Nano, Vol. 10, pp. 9201–9207, 2016. doi: 10.1021/acsnano.6b05293
  • M. Farhat, O. Barambones, and L. Sbita , “A new maximum power point method based on a sliding mode approach for solar energy harvesting,” App. Energy, Vol. 185, pp. 1185–98, 2017. doi: 10.1016/j.apenergy.2016.03.055
  • Y. Liang, and L. Yu, “Development of semiconducting polymers for solar energy harvesting,” Polym. Rev., Vol. 50, pp. 454–73, 2010. doi: 10.1080/15583724.2010.515765
  • P. Shashank, and D. J. Inman (Eds.), Energy Harvesting Technologies (Vol. 21). New York: Springer, 2009.
  • A. Erturk, and D. J. Inman, Piezoelectric Energy Harvesting. Hoboken: John Wiley & Sons, 2011.
  • X. Jiang, Y. Li, J. Li, J. Wang, and J. Yao, “Piezoelectric energy harvesting from traffic-induced pavement vibrations,” J. Renew. Sustain. Energy, Vol. 6, pp. 043110, 2014. doi: 10.1063/1.4891169
  • H. S. Kim, J. H. Kim, J. Kim, “A review of piezoelectric energy harvesting based on vibration,” IJPEM, Vol. 12, pp. 1129–14, 2011.
  • H. B. Fang, J. Q. Liu, Z. Y. Xu, L. Dong, L. Wang, D. Chen, B.C. Cai, and Y. Liu, “Fabrication and performance of MEMS-based piezoelectric power generator for vibration energy harvesting,” Microelectron. J., Vol. 37, pp. 1280–4, 2006. doi: 10.1016/j.mejo.2006.07.023
  • H. Wang, V. P. Sivan, A. Mitchel, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Energy Mater. Sol. Cells, Vol. 137, pp. 235–42, 2015. doi: 10.1016/j.solmat.2015.02.019
  • M. Mouis et al., “Thermal energy harvesting,” https://doi.org/10.1002/9781118984772.ch7, 2014
  • R. J. M. Vullers, R. van Schaijk, I. Doms, C. Van Hoof, and R. Mertens, “Micropower energy harvesting,” Solid State Electron., Vol. 53, pp. 684–93, 2009. doi: 10.1016/j.sse.2008.12.011
  • S. Niu, X. Wang, F. Yi, Y. S. Zhou, and Z. L. Wang, “A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics,” Nat. Commun., Vol. 6, 2015. doi:10.1038/ncomms9975.
  • Y. Yang, H. Zhang, Z. H. Lin, Y. S. Zhou, Q. Jing, Y. Su, J. Yang, J. Chen, C. Hu and Z. L. Wang, “Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system,” ACS Nano., Vol. 7, pp. 9213–22, 2013. doi: 10.1021/nn403838y
  • Khushboo and P. Azad, “Triboelectric nanogenerator based on vertical contact separation mode for energy harvesting,” Proc. Int. Conf. Comput. Comm. Autom. (ICCCA2017), pp. 1499–502, 2017.
  • D. Yadav, and P. Azad, “Low-cost triboelectric sensor for speed measurement and weight estimation of vehicles,” IET Intell. Transport Syst., 2018. Vol. 12, no. 8, pp. 958–64, doi:10.1049/iet-its.2018.5187.
  • P. Azad and R. Vaish, “Portable triboelectric based wind energy harvester for low power applications,” EPJ Plus, Vol. 132, pp. 253–59, 2017.
  • P. Chaudhary, and P. Azad, “Demonstration of double electrode vertical-sliding triboelectric generator,” in Proc. Int. Conf. Comput. Comm. Autom. (ICCCA2017), 1483–7, 2017.
  • P. Azad, V. P. Singh and R. Vaish, “Candle soot driven performance enhancement in pyroelectric energy conversion,” J. Elec. Mater., Vol. 47, pp. 4721–30, 2018. doi: 10.1007/s11664-018-6357-8
  • M. Sharma, V.P. Singh, S. Singh, P. Azad, B. Ilahi, N. A. Madhar, “Porous Ba0.85Ca 0.15Zr0.1Ti0.9O3 ceramics for pyroelectric applications,” J. Elec. Mater. Springer, Vol. 47, pp 4882–91, 2018. doi.org/10.1007/s11664-018-6375-6.
  • J. Wang, X. Li, Y. Zi, S. Wang, Z. Li, L. Zheng, F. Yi, S. Li, and Z. L. Wang, “A flexible fiber-based supercapacitor–triboelectric-nanogenerator power system for wearable electronics,” Adv. Mater., Vol. 27, pp. 4830–36, 2015 doi: 10.1002/adma.201501934
  • Z. Li, J. Shen, I. Abdalla, J. Yu, and B, Ding, “Nanofibrous membrane constructed wearable triboelectric nanogenerator for high performance biomechanical energy harvesting,” Nano Energy, Vol. 36, pp. 341–48, 2017. doi: 10.1016/j.nanoen.2017.04.035
  • J. Shen, Z. Li, J. Yu, B. Ding, “Humidity-resisting triboelectric nanogenerator for high performance biomechanical energy harvesting,” Nano Energy, Vol. 40, pp. 282–88, 2017. doi: 10.1016/j.nanoen.2017.08.035
  • N. Mohan, First Course on Power Electronics, Minneapolis, MN: MNPERE, Wiley, 2005.
  • M. J. Buller, W. A. Latzka, M. Yokota, W. J. Tharion, and D. S. Moran, “A real-time heat strain risk classifier using heart rate and skin temperature,” Physiol. Meas., Vol. 29, pp. N85–N79, 2008. doi: 10.1088/0967-3334/29/12/N01
  • R. W. Kenefick, S. N. Cheuvront, L. J. Palombo, B. R. Ely, and M. N. Sawka, “Skin temperature modifies the impact of hypohydration on aerobic performance,” J. App. Physiol., Vol. 109, pp.79–86, 2010. doi: 10.1152/japplphysiol.00135.2010
  • H. Tsutsumi, S. Tanabe, J. Harigaya, Y. Iguchi, and G. Nakamura, “Effect of humidity on human comfort and productivity after step changes from warm and humid environment,” Build. Environ., Vol. 42, pp. 4034–42, 2007. doi: 10.1016/j.buildenv.2006.06.037
  • E. M Sterling, A. Arundel and T. D. Sterling, “Criteria for human exposure to humidity in occupied buildings,” ASHRAE Trans., Vol. 91, pp. 611–22, 1985.
  • J. S. Cuddy, M. Buller, W. S. Hailes, B. C. Ruby, “Skin temperature and heart rate can be used to estimate physiological strain during exercise in the heat in a cohort of fit and unfit males,” Mil. Med., Vol. 178, pp. e841–-e847, 2013. doi: 10.7205/MILMED-D-12-00524
  • D. S. Moran, “Stress evaluation by the physiological strain index (PSI),” J. Basic Clin. Physiol. Pharmacol., Vol. 11, pp. 403–23, 2011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.