146
Views
1
CrossRef citations to date
0
Altmetric
Articles

Radial Point Interpolation Method (RPIM) for the Meshless Analysis of Graphene Nano Ribbon

&

REFERENCES

  • S. Rakheja, V. Kumar, and A. Naeemi, “Evaluation of the potential performance of graphene nanoribbons as on-chip interconnects,” IEEE Trans., Vol. 101, no. 7, pp. 1740–65, Jul. 2013.
  • K. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun., Vol. 146, pp. 351–5, 2008. doi: 10.1016/j.ssc.2008.02.024
  • C. Zu, H. Li, and K. Banerjee, “Modeling, analysis, and design of graphene nano-ribbon interconnects,” IEEE Trans. Electron Devices, Vol. 56, no. 8, pp. 1567–78, 2009. doi: 10.1109/TED.2009.2024254
  • M. S. Sarto and A. Tamburrano, “Comparative analysis of TL models for multilayer graphene nanoribbon and multiwall carbon nanotube interconnects,” in Proceedings of IEEE International Symposium Electromagnetic Compatibility, Fort Lauderdale, FL, Jul. 2010, pp. 212–21.
  • J. P. Cui, W. S. Zhao, W. Y. Yin, and J. Hu, “Signal transmission analysis of multilayer graphene nano-ribbon (MLGNR) interconnects,” IEEE Trans. Electromagn. Compat., Vol. 54, no. 1, pp. 126–32, 2012. doi: 10.1109/TEMC.2011.2172947
  • T. Andrijauskas, A. A. Shylau, and I. V. Zozoulenko, “Thomas-Fermi and Poisson modeling of gate electrostatics in graphene nanoribbon,” Lithuanian J. Phys., Vol. 52, no. 1, pp. 63–9, 2012. doi: 10.3952/physics.v52i1.2270
  • R. Araneo, G. Lovat, and P. Burghignoli, “Dispersion analysis of graphene nanostrip lines,” IEEE Antennas Propag. Soc. Int. Symp. (APSURSI), pp. 1–2, 2012.
  • H. Karamitaheri, M. Pourfath, R. Faez, and H. Kosina, “Atomistic study of the lattice thermal conductivity of rough graphene nanoribbons,” IEEE Trans. Electron Devices, Vol. 60, no. 7, pp. 2142–7, 2013. doi: 10.1109/TED.2013.2262049
  • P. Marconcini, “Transport simulation of armchair graphene ribbons with a generic potential in the presence of an orthogonal magnetic field nanotechnology,” IEEE Int. Conf., pp. 543–8, Aug. 2014.
  • N. R. Aluru, “A point collocation method for mesh less analysis of MEMS,” Technical report, Beckman Institute UIUC, 1998.
  • N. R. Aluru and G. Li, “Finite cloud method: a true meshless technique based on a fixed reproducing kernel approximation,” Int. J. Numer. Methods Eng., Vol. 50, no. 10, pp. 2373–410, 2001. doi: 10.1002/nme.124
  • D. W. Zing, “High-order finite-difference methods in computational electromagnetics,” Antennas Propag. Soc. Int. Symp., Vol. 1, pp. 10–113, Jul. 1997.
  • G.-H. Park, K. Krohne, and E. P. Li, “Introduction to the smoothed particle hydrodynamics method in electromagnetics,” in 19th International Zurich Symposium on Electromagnetic Compatibility, Singapore, May 2008, pp. 582–5.
  • G.-H. Park, K. Krohne, and L. E. Ping, “Completeness of smoothed particle hydrodynamics (SPH) method and its corrective methods in time-domain electromagnetics,” in IET 7th International Conference on Computation in Electromagnetics, Brighton, Apr. 2008, pp. 36–7.
  • S. Liu, Q. Yang, H. Chen, F. Liu, and W. Yan, “The study of the element-free Galerkin method for electromagnetic field analyse,” Sixth Int. Conf. Electr. Mach. Syst., Vol. 2, pp. 782–5, Nov. 2003.
  • S. A. Viana, D. Rodger, and H. C. Lai, “Meshless local Petrov–Galerkin method with radial basis functions applied to electromagnetic,” IEEE Proc. Sci. Meas. Technol., Vol. 151, no. 6, pp. 449–51, Nov. 2004. doi: 10.1049/ip-smt:20040860
  • L. Benkhaoua, M. T. Benhabiles, and M. L. Riabi, “A meshless point interpolation method for time domain analysis of lossy nonuniform transmission lines,” in International Conference on Numerical Electromagnetic Modeling and Optimization for RF, Microwave, and Terahertz Applications (NEMO), Pavia, May 2014, pp. 1–4.
  • N. Z. Lima, R. C. Mesquita, W. G. Facco, A. S. Moura, and E. J. G. Silva, “The nonconforming point interpolation method applied to electromagnetic problems,” IEEE Trans. Magn., Vol. 48, pp. 619–22, Feb. 2012. doi: 10.1109/TMAG.2011.2175376
  • G. R. Liu and Y. T. Gu, “A meshfree method: meshfree weak–strong (MWS) form method, for 2-D solids,” Comput. Mech., Vol. 33, pp. 2–14, 2003. doi: 10.1007/s00466-003-0477-5
  • G. R. Liu, Y. L. Wu, and H. Ding, “Meshfree weak–strong (MWS) from method and its application to incompressible flow problems,” Int. J. Numer. Methods Fluids, Vol. 46, pp. 1025–47, 2004. doi: 10.1002/fld.785
  • S. Kanthamani, G. Gayathiri, and S. Rohini,” Meshless analysis of bilayer graphene nanoribbon for radio frequency interconnects,” IET Micro Nano Lett., Vol. 10, no. 11, pp. 613–6, 2015. doi: 10.1049/mnl.2015.0155
  • T. Kaufmann, C. Fumeaux, and R. Vahldieck, “The meshless radial point interpolation method for time-domain electromagnetics,” in IEEE MTT-S International conference on Microwave Symposium Digest, pp. 15–20, Jun. 2008.
  • V. R. Hosseini, E. Shivanian, and W. Chen, “Local integration of 2-D fractional telegraph equation via local radial point interpolant approximation,” Eur. Phys. J. Plus, Vol. 130, no. 33, pp. 1–21, 2015.
  • E. Shivaniana, and H. R. Khodabandehlo, “Meshless local radial point interpolation (MLRPI) on the telegraph equation with purely integral conditions,” Eur. Phys. J. Plus, Vol. 129, no. 241, pp. 1–10, 2014.
  • E. Shivanian, S. Abbasbandy, M. S. Alhuthali, and H. H. Alsulami, “Local integration of 2-D fractional telegraph equation via moving least squares approximation,” Eng. Anal. Boundary Ele., Vol. 5, pp. 98–105, 2015. doi: 10.1016/j.enganabound.2015.02.012
  • E. Shivanian, “Spectral meshless radial point interpolation (SMRPI) method to two-dimensional fractional telegraph equation,” Math. Meth. Appl. Sci., Vol. 39, pp. 1820–35, 2015. doi: 10.1002/mma.3604
  • E. Shivanian and A. Khodayari, “Meshless local radial point interpolation (Mlrpi) for generalized telegraph and heat diffusion equation with non-local boundary conditions,” J. Theor. Appl. Mech., Vol. 55, pp. 571–82, 2017. doi: 10.15632/jtam-pl.55.2.571
  • E. Shivanian and H. R. Khodabandehlo, “Application of meshless local radial point interpolation (MLRPI) on generalized one-dimensional linear telegraph equation,” Int. J. Adv. Appl. Math. Mech., Vol. 2, pp. 38–50, 2015.
  • D. Y. Liu, W. Q. Chen, and C. Zhang, “Improved beam theory for multilayer graphene nanoribbons with interlayer shear effect,” Physics Lett. A, Vol. 377, pp. 1297–300, 2013. doi: 10.1016/j.physleta.2013.03.033
  • W.-S. Zhao and W.-Y. Yin, “Comparative study on multilayer graphene nanoribbon (MLGNR) interconnects,” IEEE Trans. Electromagn. Compat., Vol. 56, no. 3, pp. 638–45, 2014. doi: 10.1109/TEMC.2014.2301196

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.