119
Views
0
CrossRef citations to date
0
Altmetric
Articles

Investigation of RF and DC Performance of E-Mode In0.80Ga0.20As/InAs/In0.80Ga0.20as Channel based DG-HEMTs for Future Submillimetre Wave and THz Applications

ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • J. Ajayan, and D. Nirmal, “A Review of InP/InAlAs/InGaAs based transistors for high frequency applications,” Superlattices Microstruct., Elsevier, Vol. 86, no. 10, pp. 1–19, Oct. 2015. doi: 10.1016/j.spmi.2015.06.048
  • J. A. Del Alamo, “Nanometre electronics with III–V compound semiconductors,” Nature, Vol. 479, no. 7373, p. 317–23, 2011. doi: 10.1038/nature10677
  • J. A. Del Alamo, D. A. Antoniadis, J. Lin, Wenjie Lu, A. Vard, and Xin Zhao, “Nanometer-Scale III-V MOSFETs,” J Electron Devices Soc, Vol. 4, no. 5, pp. 201–14, 2016.
  • J. Ajayan, and D. Nirmal, “20 nm high performance enhancement mode InP HEMT with heavily doped S/D regions for future THz applications,” Superlattices Microstruct., Vol. 100, no. 15, pp. 526–34, 2016. doi: 10.1016/j.spmi.2016.10.011
  • P. K. Basu, “Quantum confined electronic and photonic devices,” IETE. J. Res., Vol. 38, no. 2, pp. 133–42, 1992. doi: 10.1080/03772063.1992.11437041
  • J. Ajayan, D. Nirmal, P. Prajoon, and J. Charles Pravin, “Analysis of nanometer-scale InGaAs/InAs/InGaAs composite channel MOSFETs using high-K dielectrics for high speed applications,” Int. J. Electron. Commun. (AEÜ), Vol. 79, pp. 151–7, 2017. doi: 10.1016/j.aeue.2017.06.004
  • D. Chattopadhyay, “Current researches on electronic transport in semiconducting compounds: an overview,” IETE. J. Res., Vol. 38, no. 2, pp. 65–69, 1992. doi: 10.1080/03772063.1992.11437030
  • J. Ajayan, and D. Nirmal, “20 nm T-Gate composite channel enhancement-mode metamorphic HEMT on GaAs substrates for future THz applications,” J. Comput. Electron., Springer, Vol. 15. no. 4, pp. 1291–6, 2016. doi: 10.1007/s10825-016-0884-4
  • B K Mishra, V Pradeep, and P Chakrabarti, “Microwave characterization of an optically controlled high electron mobility transistor,” IETE. J. Res., Vol. 39, no. 6, pp. 361–73, 1993. doi: 10.1080/03772063.1993.11437147
  • D. H. Kim, et al. “Ft = 688 GHz and fmax = 800 GHz in Lg = 40 nm In0.7Ga0.3As MHEMTs with gm_max > 2.7mS/µm,” in Proceedings of IEDM Tech. Dig., Washington, DC, 2011, pp. 319–21.
  • Xiaobing Mei, and Wayne Yoshida, “First demonstration of amplification at 1 THz using 25-nm InP high electron mobility transistor process,” IEEE Electron Device Lett. Vol. 36, no. 4, pp. 327–9, 2015. doi: 10.1109/LED.2015.2407193
  • J. Ajayan, and D. Nirmal, “20 nm enhancement mode metamorphic GaAs HEMT with highly doped InGaAs source/drain regions for high frequency applications,” Int. J. Electron., Taylor & Francis Group, Vol.104, no. 3, pp. 504–12, 2017. doi: 10.1080/00207217.2016.1218066
  • M. J. W. Rodwell et al., “Nanometer InP electron devices for VLSI and THz applications,” in Proc. 72nd Annu. Device Res. Conf. (DRC), Santa Barbara, CA, June 22–25, 2014, pp. 215–6.
  • R. Lai, X.B. Mei, and W.R. Deal, “Sub 50 nm InP HEMT device with fmax greater than 1 THz, in: Proceedings of IEDM Tech. Dig., Washington, DC, USA, Dec. 10–12, 2007, pp. 609–11.
  • William Deal, “THz monolithic integrated circuits using InP high electron mobility transistors,” IEEE Tans. Terahertz Sci. Technol. Vol. 1, no. 1, pp. 25–32, September 2011. doi: 10.1109/TTHZ.2011.2159539
  • Monika Bhattacharya, Jyotika Jogi, R. S. Gupta, and Mridula Gupta. “Impact of temperature and indium composition in the channel on the microwave performance of single-gate and double-gate InAlAs/InGaAs HEMT,” IEEE Trans. Nanotechnol., Vol. 12, no. 6, pp. 965–70, Nov. 2013. doi: 10.1109/TNANO.2013.2276415
  • B. G. Vasallo, N. Wichmann, S. Bollaert, Y. Roelens, A. Cappy, T. Gonzalez, D. Pardo, and J. Mateos, “Comparison between the noise performance of double- and single- gate InP based HEMTs,” IEEE Trans.Electron Devices, Vol. 55, no. 6, pp. 1535–40, Jun. 2008. doi: 10.1109/TED.2008.921982
  • B. G. Vasallo, N. Wichmann, S. Bollaert, Y. Roelens, A. Cappy, T. Gonzalez, D. Pardo, and J. Mateos, “Comparison between the dynamic performance of double- and single-gate InP based HEMTs,” IEEE Trans. Electron Devices, Vol. 54, no. 11, pp. 2815–22, Nov. 2007. doi: 10.1109/TED.2007.907801
  • N. Wichmann, I. Duszynski, S. Bollart, X. Wallart, J. Mateos, and A. Cappy, “Ingaas/InAlAs double gate HEMTs on transferred substrate,” IEEE Electron Device Lett., Vol. 25, no. 6, pp. 354–6, Jun. 2004. doi: 10.1109/LED.2004.829029
  • M. Bhattacharya, J. Jogi, R. S. Gupta, and M. Gupta, “An accurate charge control based approach for noise performance assessment of a symmetric tied-gate InAlAs/InGaAs DG-HEMT,” IEEE Trans. Electron Devices, Vol. 59, no. 6, pp. 1644–52, Jun. 2012. doi: 10.1109/TED.2012.2190738
  • Monika Bhattacharya, Jyotika Jogi, R. S. Gupta, and Mridula Gupta, “Temperature-dependent analytical model for microwave and noise performance characterization of In0.52Al0.48As/InmGa1−mAs (0.53 ≤ m ≤ 0.8) DG-HEMT,” IEEE Trans. Device Mater. Reliab., Vol. 13, no. 1, pp. 293–300, March 2013. doi: 10.1109/TDMR.2013.2243913
  • D.H. Kim, and Jesus A. Del Alamo, “The impact of side-recess spacing on the logic performance of 50 nm In0.7Ga0.3As HEMTs,” in Proceedings of IPRM, Princeton, NJ, USA, May 8–11, 2006, pp. 177–80.
  • T. Suemitsu, and H. Yokoyama, “High performance 0.1-µm gate enhancement-mode InAlAs/InGaAs HEMTs using two-step recessed gate technology,” IEEE Trans. Electron Devices, Vol. 46, no. 6, pp. 1074–80, 1999. doi: 10.1109/16.766866
  • E. -Yi Chang, and Chien-I. Kuo, “InAs thin-channel high-electron-mobility transistors with very high current-gain cutoff frequency for emerging submillimeter-wave applications,” Appl. Phys. Express, Vol. 6, no. 3, pp. 034001-1-3, 2013.
  • V. Radisic, and K. Leong, “Power amplification at 0.65 THz using InP HEMTs,” IEEE Trans. Microw. Theory Tech., Vol. 60, no.3, pp. 724–9, 2012. doi: 10.1109/TMTT.2011.2176503
  • K. Shinohara, and Y. Yamashita, “Extremely high speed lattice matched InGaAs/InAlAs high electron mobility transistors with 472 GHz cutoff frequency,” Jpn. J. Appl. Phys., Vol. 41, no. 4B, pp. L437–9, 2002. doi: 10.1143/JJAP.41.L437
  • Y. Yamashita, and A. Endoh, “Pseudomorphic In0.52Al0.48As/In0.7Ga0.3As HEMTs with an ultra high fT of 562 GHz,” IEEE Electron Device Lett., Vol. 23, no. 10, pp. 573–5, 2002. doi: 10.1109/LED.2002.802667
  • W.R. Deal, “Demonstration of a 0.48 THz amplifier module using InP HEMT transistors,” IEEE Microw. Wirel. Components Lett. Vol. 20, no. 5, pp. 289–91, May 2010.
  • K. Shinohara, and Y. Yamashita, “547 GHz ft</ In0.7Ga0.3As/In0.52Al0.48As HEMTs with reduced source and drain resistance,” IEEE Electron Device Lett. Vol. 25, pp. 241–3, May 2004.
  • D.H. Kim, and Jesus A. del Alamo, “30-nm InAs PHEMTs with fT=644 GHz and fmax = 681 GHz,” IEEE Electron Device Lett. Vol. 31, no. 8, pp. 806–8, 2010. doi: 10.1109/LED.2010.2051133
  • D.H. Kim, and Jesus A. del Alamo, “30-nm InAs pseudomorphic HEMTs on an InP substrate with a current-gain cut off frequency of 628 GHz,” IEEE Electron Device Lett. Vol. 29, no. 8, pp. 830–3, 2008. doi: 10.1109/LED.2008.2000794
  • T.W. Kim, D.H. Kim, and Jesus A. Del Alamo, “Logic characteristics of 40 nm thin-channel InAs HEMTs,” in Proceedings of IPRM, Kagawa, Japan, May 4, 2010, pp. 496–8.
  • W.R. Deal, and K. Leong, “Low noise amplification at 0.67 THz using 30 nm InP HEMTs,” IEEE Microw. Wirel. Compon. Lett. Vol. 21, no. 7, pp. 368–70, 2011. doi: 10.1109/LMWC.2011.2143701
  • Shu-Xiang Sun, Liu-Hong Ma, Chao Cheng, Chavo Zhang, Ying-Hui Zhong, Yu-Xiao Li, Peng Ding, and Zhi Jin, “Numerical simulation of the impact of surface traps on the performance of InP – based high electron mobility transistors,” Phys. Status Solidi A, Vol. 214, no. 10, pp. 1700322-1-5, 2017. doi: 10.1002/pssa.201700322
  • Dong Xu, and Xiaoping Yang, “50-nm asymmetrically recessed metamorphic high-electron mobility transistors with reduced source–drain spacing: performance enhancement and tradeoffs,” IEEE Trans. Electron Devices, Vol. 59, no. 1, pp. 128–38, January 2012. doi: 10.1109/TED.2011.2172614
  • Kim D-H, and J. A. del Alamo, “Lateral and vertical scaling of In0.7</Ga0.3As HEMTs for post-Si-CMOS logic applications,” IEEE Trans. Electron Devices, Vol. 55, no. 10, pp. 2546–53, 2008. doi: 10.1109/TED.2008.2002994
  • J. Lin, D. A. Antoniadis, and J. A. del Alamo, “Impact of intrinsic channel scaling on InGaAs quantum-well MOSFETs,” IEEE Trans. Electron Devices, Vol. 62, no. 11, pp. 3470–6, 2015. doi: 10.1109/TED.2015.2444835
  • D. H. Kim, and Jesus A. Del Alamo, “Performance Evaluation of 50 nm In0.7Ga0.3As HEMTs For beyond CMOS logic applications, in Proceedings of IEDM Tech. Dig., Washington, DC, USA, Dec. 5, 2005, pp. 767–70.
  • Shu-Xiang Sun, Hui-Fang Ji, Hui-Juan Yao, Sheng Li, Zhi Jin, Peng Ding, and Ying-Hui Zhong, “Physical modeling of direct current and radio frequency characteristics for InP-based InAlAs/InGaAs HEMTs,” Chin. Phys. B, Vol. 25, no. 10, pp. 108501-1–108501-4, 2016.
  • J. Ajayan, and D. Nirmal, “22 nm In0.75Ga0.25As channel based HEMTs on InP/GaAs substrates for future THz applications,” Journal of Semiconductors, Vol. 38, no. 4, pp. 044001-1-6, April 2017. doi: 10.1088/1674-4926/38/4/044001
  • K.J. Chen, and T. Enoki, “High performance InP based enhancement mode HEMTs using non-alloyed ohmic contacts and Pt-based buried gate technologies,” IEEE Trans. Electron Devices, Vol. 43, no. 2, pp. 252–7, 1996. doi: 10.1109/16.481725
  • J. Ajayan, T. D. Subash, and Dheena Kurian, “20 nm high performance novel MOSHEMT on InP substrate For future high speed Low power applications,” Superlattices Microstruct., Vol. 109, pp. 183–93, September 2017. doi: 10.1016/j.spmi.2017.05.015
  • Sorour Toufani, and Massoud Dousti, “Improved T-shaped gate double heterojunction AlGaN/GaN/ InGaN/GaN HEMT-based wideband flat LNA,” IETE. J. Res., doi:10.1080/03772063.2015.1085336, 2015.
  • J. Ajayan, D. Nirmal, T. Ravichandran, P. Mohankumar, P. Prajoon, L. Arivazhagan, and Chandan Kumar Sarkar, “InP high electrón mobility transistors for submillimetre wave and terahertz frequency applications: A Review,” Int. J. Electron. Commun. (AEÜ), Vol. 94, pp. 199–214, 2018. doi: 10.1016/j.aeue.2018.07.015
  • J. Ajayan, T. Ravichandran, P. Mohankumar, P. Prajoon, J.C. Pravin, and D. Nirmal, “Investigation of DC-RF and breakdown behaviour in Lg = 20 nm novel asymmetric GaAs MHEMTs for future submillimetre wave applications,” Int. J. Electron. Commun. (AEÜ), Vol. 84, pp. 387–93, 2018. doi: 10.1016/j.aeue.2017.12.022
  • J. Ajayan, T. Ravichandran, P. Prajoon, J.C. Pravin, and D. Nirmal, “Investigation of breakdown performance in Lg = 20 nm novel asymmetric InP HEMTs for future high-speed high-power applications,” J. Comput. Electron., Springer, Vol. 17. no. 1, pp. 265–72, 2018. doi: 10.1007/s10825-017-1086-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.