241
Views
4
CrossRef citations to date
0
Altmetric
Articles

Analysis of Photonic Crystal Diffraction Grating Based Light Trapping Structure for GaAs Solar Cell

&

References

  • E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am., Vol. 72, no. 7, pp. 899–907, Jul. 1982. doi: 10.1364/JOSA.72.000899
  • B. Yan, J. M. Owens, C. Jiang, and S. Guha, “High-Efficiency Amorphous Silicon Alloy based solar cells and Modules,” MRS Symp. Proc., Vol. A23, no. 3, p. 862, 2005.
  • J. Springer, A. Poruba, L. Müllerova, M. Vanecek, O. Kluth, and B. Rech, “Absorption loss at nanorough silver back reflector of thin-film silicon solar cells,” J. Appl. Phys., Vol. 95, pp. 1427–1429, 2004. doi: 10.1063/1.1633652
  • Y. Hamakawa, Thin-Film solar cells, Next generation Photovoltaics and Its applications, Berlin: Springer-Verlag, 2004.
  • J. Nelson, The Physics of solar cell. London: Imperial College Press, 2008.
  • M. A. Green, High Efficiency Silicon solar cells. Aedermannsdorf: Trans. Tech., 1987.
  • P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys., Vol. 62, no. 1, pp. 243–249, Jul. 1987. doi: 10.1063/1.339189
  • D. C. Johnson, et al., “Advances in Bragg stack quantum well solar cells,” Sol. Energy Mater. Sol. Cells, Vol. 87, no. 1–4, pp. 169–179, 2005. doi: 10.1016/j.solmat.2004.09.014
  • L. Zeng, et al., “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett., Vol. 89, no. 11, pp. 111-113, Sep. 2006. doi: 10.1063/1.2349845
  • N. N. Feng, et al., “Design of Highly Efficient light-trapping structures for thin-film Crystalline Silicon solar cells,” IEEE Trans. Electron Devices, Vol. 54, no. 8, pp. 1926-1933, Aug. 2007. doi: 10.1109/TED.2007.900976
  • D. Zhou and R. Biswas, “Photonic crystals enhanced light trapping in thin film solar cells,” J. Appl. Phys., Vol. 103, p. 093102, 2008. doi: 10.1063/1.2908212
  • R. Lorenzoa and S. Chaudhurya, “Review of circuit Level Leakage Minimization techniques in CMOS VLSI Circuits,” IETE Tech. Rev., Vol. 34, pp. 1-23, Apr. 2016.
  • A. K. Bansa and A. Dixit, “Advances in Logic device Scaling,” IETE Tech. Rev., Vol. 32, no. 4, pp. 311-318, Jul. 2015. doi: 10.1080/02564602.2015.1023372
  • M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 39),” Progr. Photovoltaics, Vol. 20, no. 1, p. 12–20, 2012. doi: 10.1002/pip.2163
  • Admin, August 6 2012. Online]. Available: http://altadevices-blog.com
  • W. Shockley and H. J. Queisser, “Detailed balance limit of p-n junction solar cells,” J. Appl. Phys., Vol. 32, no. 510,p. 510, 1961. doi: 10.1063/1.1736034
  • X. Wang, M. Khan, J. L. Gray, M. A. Alam, and M. S. Lundstrom, “Design of GaAs solar cells Operating close to the Shockley–queisser limit,” IEEE J. Photovoltaics, Vol. 3,no. 2, pp. 737-744, 2013. doi: 10.1109/JPHOTOV.2013.2241594
  • S. Eyderman, A. Deinega, and S. John, “Near perfect solar absorption in ultra-thin-film GaAs photonic crystals,” J. Mater. Chem. A, Vol. 2, no. 3, pp. 761-769, 2014. doi: 10.1039/C3TA13655H
  • T. F. Gundogdu, M. Gökkavas, and E. Ozbay, “Absorption enhancement in InGaN-based photonic crystal-implemented solar cells,” J. Nanophotonics, Vol. 6,p. 061603, 2012. doi: 10.1117/1.JNP.6.061603
  • S. Zanotto, M. Liscidini, and L. C. Andreani, “Light trapping regimes in thin-film silicon solar cells with a photonic pattern,” Opt. Express, Vol. 18, no. 5, pp. 4260-4274, 2010. doi: 10.1364/OE.18.004260
  • S. Eyderman, S. John, and A. Deinega, “Solar light trapping in slanted conical-pore photonic crystals: beyond statistical ray trapping,” J. Appl. Phys., Vol. 113, no. 15, p. 154315, 2013. doi: 10.1063/1.4802442
  • J. D. Joannopoulos, Photonic crystals - Molding the flow of light. New Jersey: Princeton University Press, 1995.
  • R. Biswas, et al., “Theory of subwavelength hole arrays coupled with photonic crystals for extraordinary thermal emission,” Physical Review B, Vol. 74, no. 045107, pp. 1-6, Jul. 2006.
  • N. Gupta and V. Janyani, “Design and optimization of photonic crystal diffraction grating based efficient light trapping structure for GaAs thin film solar cell,” J. Nanoelectron. Optoe., Vol. 11, no. 4, pp. 407-415, 2016. doi: 10.1166/jno.2016.1914
  • E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical Sheets for solar cells,” IEEE Trans. Electron Devices, Vol. 29, no. 2, pp. 300-305, 1982. doi: 10.1109/T-ED.1982.20700
  • D. E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat, “Optical properties of AlxGa1−xAs,” J. Appl. Phys., Vol. 60, pp. 754-767, 1986. doi: 10.1063/1.337426
  • E. D. Palik, Handbook of optical constant of solids, 3rd ed. Boston: Academic Press, 1998.
  • T. A. F. König, P. A. Ledin, J. Kerszulis, M. A. Mahmoud, M. A. El-Sayed, J. R. Reynolds, and V. V. Tsukruk, “Electrically tunable plasmonic behavior of nanocube-polymer nanomaterials induced by a redox-active electrochromic polymer,” ACS Nano, Vol. 8, pp. 6182-6192, 2014. doi: 10.1021/nn501601e
  • ASTM G-173-03, “Standard Tables for Reference Solar Spectral Irradiance at Air Mass 1.5: Direct Normal and Hemispherical for a 37 Degree Tilted Surface” [Online]. Available: http://rredc.nrel.gov/solar/spectra/am1.5/
  • J. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys., Vol. 114, no. 2, pp. 185-200, 1994. doi: 10.1006/jcph.1994.1159
  • K. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antennas Propag., Vol. 14, no. 3, pp. 302–307, 1966. doi: 10.1109/TAP.1966.1138693
  • J. S. Blakemore, “Semiconducting and other major properties of gallium arsenide,” J. Appl. Phys., Vol. 53, pp. R123-R181, 1982. doi: 10.1063/1.331665
  • M. A. Green, “Lambertian light trapping in textured solar cells and light-Emitting Diodes: Analytical Solutions,” Prog. Photovoltaics Res. Appl., Vol. 10, pp. 235–241, 2002. doi: 10.1002/pip.404
  • A. Bozzola, M. Liscidini, and L. C. Andreani, “Photonic light-trapping versus Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns,” Opt. Express, Vol. 20, no. S2, pp. A224–A243, 2012. doi: 10.1364/OE.20.00A224
  • N. D. Gupta, V. Janyani, G. Singh, and H. Tsuda, “Design and analysis of Low loss Highly efficient light trapping structure for GaAs thin film solar cells using photonic crystals as diffraction grating,” in Frontiers in Optics 2015, OSA technical Digest (online) (optical Society of America, 2015), San Jose, CA, USA, 2015, paper FTu3C.4.
  • P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express, Vol. 15, no. 25, pp. 16986-17000, Dec. 2007. doi: 10.1364/OE.15.016986
  • N. Gupta and V. Janyani, “Design and analysis of light trapping in thin film GaAs solar cells using 2-D photonic crystal structures at front surface,” IEEE J. Quantum Electron., Vol. 53, no. 2, p. 1, 2017. doi: 10.1109/JQE.2017.2667638
  • N. N. Feng, G. R. Zhou, and W. Huang, “Space mapping technique for design optimization of antireflection coatings for photonic devices,” J. Lightwave Technol., Vol. 21, no. 1, pp. 281–285, Jan. 2003. doi: 10.1109/JLT.2003.808641
  • Y. Park, et al., “Absorption enhancement using photonic crystals for silicon thin film solar cells,” Opt. Express, Vol. 17, no. 16, pp. 14312–14321, Aug. 2009. doi: 10.1364/OE.17.014312

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.