158
Views
6
CrossRef citations to date
0
Altmetric
Review Articles

A Survey on Matrix Converter fed Direct Torque Control Techniques for AC Machines

&

References

  • F. Blaschke, “The principle of field-orientation as applied to the transvector closed-loop control system for rotating-field machines,” Siemens Rev., Vol. 34, pp. 217–20, 1972.
  • I. Takahashi and T. Noguchi, “A new quick-response and high efficiency control strategy of an induction motor,” IEEE Trans. Ind. Appl., Vol. IA-22, no. 5, pp. 820–27, Sep. 1986.
  • K. K. Shyu, J. K. Lin, V. T. Pham, M. J. Yang, and T. W. Wang, “Global minimum torque ripple design for direct torque control of induction motor drives,” IEEE Trans. Ind. Electron., Vol. 57, no. 9, pp. 3148–56, Sept. 2010.
  • A. Sivaprakasam, “A new approach to reduce torque ripple and noise in twelve sector based direct torque controller fed permanent magnet synchronous motor drive: Simulation and experimental results,” Noise Control Eng. J., Vol. 65, no. 6, pp. 531–48, Nov. 2017.
  • G. S. Buja and M. P. Kazmierkowski, “Direct torque control of PWM inverter-fed AC motors—a survey,” IEEE Trans. Ind. Electron., Vol. 51, no. 4, pp. 744–57, Aug. 2004.
  • G. Habetler, F. Profuno, M. Pastorelli, and L. Tolbert, “Direct torque control of induction machines using space vector modulation,” IEEE Trans. Ind. Appl., Vol. 28, no. 5, pp. 1045–53, Sept./Oct. 1992.
  • J. S. Lee, C. H. Choi, J. K. Seok, and R. D. Lorenz, “Deadbeat-direct torque and flux control of interior permanent magnet synchronous machines with discrete time stator current and stator flux linkage observer,” IEEE Trans. Ind. Appl., Vol. 47, no. 4, pp. 1749–58, July/Aug. 2011.
  • H. Zhu, X. Xiao, and L. Yongdong, “Torque ripple reduction of the torque predictive control scheme for permanent-magnet synchronous motors,” IEEE Trans. Ind. Electron., Vol. 59, no. 2, pp. 871–7, Feb. 2012.
  • J. K. Kang and S. K. Sul, “New direct torque control of induction motors for minimum torque ripple and constant switching frequency,” IEEE Trans. Ind. Appl., Vol. 35, no. 5, pp. 1076–82, Sept./Oct. 1999.
  • I. G. Bird and H. Zelaya, “Fuzzy logic torque ripple reduction for DTC based ac drives,” Electron. Lett., Vol. 33, no. 17, pp. 1501–2, Aug. 1997.
  • A. Arias, L. Romeral, E. Aldabas, and M. G. Jayne, “Improving direct torque control by means of fuzzy logic,” Electron. Lett., Vol. 37, no.1, pp. 69–71, Jan. 2001.
  • Y. S. Lai, and J. C. Lin, “New hybrid fuzzy controller for direct torque control induction motor drives,” IEEE Trans. Power Electron., Vol. 18, no. 5, pp. 1211–19, Sept. 2003.
  • A. F. Aimer, A. Bendiabdellah, A. Miloudi, and C. Mokhtar, “Application of fuzzy logic for a ripple reduction strategy in DTC scheme of a PWM inverter fed induction motor drives,” J. Elect. Syst., Special Issue 1, pp. 13–17, Nov 2009.
  • G. M. Gadoue, D. Giaouris, and J. W. Finch, “Artificial intelligence-based speed control of DTC induction motor drives—a comparative study,” Electr. Pow. Syst. Res., Vol. 79, no. 1, pp. 210–19, Jan. 2009.
  • R. Toufouti, S. Meziane, and H. Benalla, “Direct torque control for induction motor using fuzzy logic,” ACSE J., Vol.6, no.2, pp. 19–26, June 2006.
  • Y. V. S. Reddy, M. Vijayakumar, and T. Brahmananda Reddy, “Direct torque control of induction motor using sophisticated lookup tables based on neural networks,” AIML J., Vol. 7, no. 1, pp. 9–15, Jun 2007.
  • P. Sathish kumar, A. Sivaprakasam, and T. Manigandan, “Implementation of twelve-sector based direct torque control for induction motor,” Int. J. Eng. Sci. Invent., Vol. 2, no. 4, pp. 32–7, April 2013.
  • S. Kouro, R. Bernal, H. Miranda, C. A. Silva, and J. Rodriguez, “High – performance torque and flux control for multilevel inverter fed induction motors,” IEEE Trans. Power Electron., Vol. 22, no. 6, pp. 2116–23, Nov 2007.
  • K. B. Lee, J. H. Song, I. Choy, and J. Y. Yoo, “Improvement of low- speed operation performance of DTC for three-level inverter-fed induction motors,” IEEE Trans. Ind. Electron., Vol. 48, no. 5, pp. 1006–14, Oct. 2001.
  • V. Perelmuter, “Three-level inverters with direct torque control,” in Proceedings of IEEE Industrial Aplications, Italy, 2000, pp. 1368–74.
  • D. Casadei, G. Serra, and A. Tani, “The use of matrix converters in direct torque control of induction machines,” IEEE Trans. Ind. Electron., Vol. 48, no. 6, pp. 1057–64, Dec. 2001.
  • S. Sina Sebtahmadi, H. Pirasteh, S. H. Aghay Kaboli, A. Radan, and S. Mekhleif, “A 12-sector space vector switching scheme for performance improvement of matrix-converter-based DTC of IM drive,” IEEE Trans. Power Electron., Vol. 30, no. 7, pp. 3804–17, July 2015.
  • P. Wheeler, J. Rodriguez, J. Clare, L. Empringham, and A. Weinstein, “Matrix converters: A technology review,” IEEE Trans. Ind. Electron., Vol. 49, no. 2, pp. 276–88, Apr. 2002.
  • P. Wheeler, J. Clare, M. Apap, and K. J. Bradley, “Harmonic loss due to operation of induction machines from matrix converters,” IEEE Trans. Ind. Electron., Vol. 55, no. 2, pp. 809–16, Feb. 2008.
  • P. Correa, J. Rodríguez, M. Rivera, J. R. Espinoza, and J. W. Kolar, “Predictive control of an indirect matrix converter,” IEEE Trans. Ind. Electron., Vol. 56, no. 6, pp. 1847–53, Jun. 2009.
  • S. S. Sebtahmadi, H. B. Azad, D. Islam, M. Seyedmahmoudian, B. Horan, and S. Mekhilef, “A current control approach for an abnormal grid supplied ultra sparse Z- source matrix converter with a particle swarm optimization proportional- integral induction motor drive controller,” Energies, Vol.9, pp. 899, Nov. 2016.
  • S. S. Sebtahmadi, H. B. Azad, S. H. A. Kaboli, M. D. Islam, and S. Mekhilef, “A PSO-DQ current control scheme for performance enhancement of Z source matrix converter to drive IM fed by abnormal voltage,” IEEE Trans. Power Electron., Vol. 33, no. 2, pp. 1666–81, Feb. 2018.
  • C. Ortega, A. Arias, C. Caruana, J. Balcells, and G. Asher, “Improved waveform quality in the direct torque control of matrix-converter-fed PMSM drives,” IEEE Trans. Ind. Electron.,Vol. 57, no. 6, pp. 2101–10, Jun. 2010.
  • D. Casadei, G. Serra, A. Tani, and L. Zarri, “Matrix converter modulation strategies: A new general approach on space-vector representation of the switch state”, IEEE Trans. Indus. Electron., Vol. 49, no. 2, pp. 370–81, April 2002.
  • S. Bouchiker, G. Capolino, and M. Paloujado, “Vector control of a permanent-magnet synchronous motor using ac-ac matrix converter,” IEEE Trans. Power Electron., Vol. 13, no. 6, pp. 1089–99, Nov. 1998.
  • C. Klumpner, F. Blaabjerg, and P. Nielsen, “Speeding-up the maturation process of the matrix converter technology,” in Proceedings of IEEE 32nd Annual Power Electronics Specialists Conference, Vancouver, 2001, pp. 1083–8.
  • P. Zanchetta, P. Wheeler, J. Clare, M. Bland, L. Empringham, and D. Katsis, “Control design of a three-phase matrix-converter-based AC–AC mobile utility power supply,” IEEE Trans. Ind. Electron., Vol. 55, no. 1, pp. 209–17, Jan. 2008.
  • J. Rodriguez, M. Rivera, J. W. Kolar, and P. W. Wheeler, “A review of control and modulation methods for matrix converters,” IEEE Trans. Ind. Electron., Vol. 59, no. 1, pp. 58–70, Jan. 2012.
  • M. Jussila and H. Tuusa, “Comparison of direct and indirect matrix converters in induction motor drive,” in IECON 2006-32nd Annual Conference on IEEE industrial Electronics, Paris, 2006, pp. 1621–6.
  • J. W. Kolar, F. Schafmeister, S. D. Round, and H. Ertl, “Novel three-phase AC–AC Sparse matrix converters,” IEEE Trans. Power Electron., Vol. 22, no. 5, pp. 1649–61, Sept. 2007.
  • L. Zarri, M. Mengoni, A. Tani, and J. O. Ojo, “Range of the linear modulation in matrix converters,” IEEE Trans. Power Electron., Vol. 29, no. 6, pp. 3166–78, June 2014.
  • L. Huber and D. Borojevic, “Space vector modulated three-phase to three-phase matrix converter with input power factor correction,” IEEE Trans. Ind. Appl., Vol. 31, no. 6, pp. 1234–46, Nov./Dec. 1995.
  • H. M. Basri and S. Mekhilef, “Experimental evaluation of model predictive current control for a modified three-level four-leg indirect matrix converter,” IET Electr. Power Appl., Vol. 12, no. 1, pp. 114–23, 2018.
  • A. Iqbal, S. K. M. Ahmed, and H. Abu-Rub, “Space vector PWM technique for a three-to-five phase matrix converter,” IEEE Trans. Ind. Appl., Vol. 48, no. 2, pp. 697–707, Mar./Apr. 2012.
  • S. K. M. Ahmed, A. Iqbal, H. Abu-Rub, J. Rodriguez, and C. Rojas, “Simple carrier-based PWM technique for a three to nine phase matrix converter,” IEEE Trans. Ind. Electron., Vol. 58, no. 11, pp. 5014–23, Nov. 2011.
  • S. M. Ahmed, A. Iqbal, and H. Abu-Rub, “Generalized duty ratio based pulse width modulation technique for a three-to-k phase matrix converter,” IEEE Trans. Ind. Electron., Vol. 58. no. 9, pp. 3925–37, Sept. 2011.
  • A. Sivaprakasam and T. Manigandan, “An alternative scheme to reduce torque ripple and mechanical vibration in direct torque controlled permanent magnet synchronous motor,” J. Vib. Control, Vol. 21, no. 5, pp. 855–71, 2015.
  • F. Montazeri and D. A. Khaburi, “Torque ripple reduction in direct torque control of Induction machines by use of all voltage vectors of matrix converters,” in 1st Power Electronic & Drive Systems & Technologies Conference, Tehran, 2010, pp. 261–6.
  • S. Mondal and D. Kastha, “Improved direct torque and reactive power control of a matrix-converter-fed grid-connected doubly fed induction generator,” IEEE Trans. Ind. Electron., Vol. 62, no. 12, pp. 7590–8, Dec. 2015.
  • S. Li, Y. Yan, W. Chen, S. Ai, and C. Xia, “A Sub-region based direct torque control method of matrix converter fed PMSM drive system,” in IEEE 25th International Symposium on Industrial Electronics (ISIE), Santa Clara, 2016, pp. 128–33.
  • Y. Yan, J. Zhao, C. Xia, and T. Shi, “Direct torque control of matrix converter-fed permanent magnet synchronous motor drives based on master and slave vectors,” IET Power Electron., Vol. 8, no. 2, pp. 288–96, Feb. 2015.
  • K. B. Lee and F. Blaabjerg, “An improved DTC-SVM method for sensorless matrix converter drives using an overmodulation strategy and a simple nonlinearity compensation,” IEEE Trans. Ind. Electron., Vol. 54, no. 6, pp. 3155–66, Dec. 2007.
  • K. B. Lee and F. Blaabjerg, “Sensorless DTC- SVM for induction motor driven by a matrix converter using a parameter estimation strategy,” IEEE Trans. Ind. Electron., Vol. 55, no. 2, pp. 512–21, Feb. 2008.
  • K. B. Lee, F. Blaabjerg, and T. W. Yoon, “Speed-Sensorless DTC- SVM for matrix converter drives with simple nonlinearity compensation,” IEEE Trans. Ind. Appl., Vol. 43, no. 6, pp. 1639–49, Dec. 2007.
  • D. Xiao and M. F. Rahman, “Sensorless direct torque and flux controlled IPM synchronous machine fed by matrix converter over a wide speed range,” IEEE Trans. Ind. Infor., Vol. 9, no. 4, pp. 1855–67, Nov. 2013.
  • T. N. Mir, B. Singh, and A. H. Bhat, “Constant switching frequency DTC for matrix converter fed speed sensorless Induction motor drive,” J. Inst. Eng., Vol. 99, no. 5, pp. 527–35, Oct. 2018.
  • Y. Guo, X. Wang, G. Yougui, and W. Deng, “Speed – sensorless direct torque control scheme for matrix converter driven induction motor,” J. Eng., Vol. 2018, no. 13, pp. 432–37, Aug. 2018.
  • S. K. M. Ahmed, Z. Salam, and H. Abu-Rub, “An improved space vector modulation for three to seven phase matrix converter with reduced number of switching vectors,” IEEE Trans. Ind. Electron., Vol. 62, no. 6, pp. 3327–37, Jun. 2015.
  • C. Xia, J. Zhao, Y. Yan, and T. Shi, “A novel direct torque control of matrix converter-fed PMSM drives using duty cycle control for torque ripple reduction,” IEEE Trans. Ind. Electron., Vol. 61, no. 6, pp. 2700–13, Jun. 2014.
  • R. Vargas, J. Rodriguez, U. Ammann, and P.W. Wheeler, “Predictive current control of an induction machine fed by a matrix converter with reactive power control,” IEEE Trans. Ind. Electron., Vol. 55, no. 12, pp. 4362–71, Dec. 2008.
  • M. Rivera, P. Wheeler, A. Olloqui, and D. A. Khaburi, “A review of predictive control techniques for matrix converters—part II,” in Proceedings 7th Conference Power Electronics Drive Systems Technologies, Tehran, 2016, pp. 589–95.
  • R. Vargas, U. Ammann, and J. Rodriguez, “Predictive approach to increase efficiency and reduce switching losses on matrix converters,” IEEE Trans. Power Electron., Vol. 24, no. 4, pp. 894–902, Apr. 2009.
  • M. Siami, D. A. Khaburi, M. Yousefi, and J. Rodriguez, “Improved predictive torque control of a permanent magnet synchronous motor fed by a matrix converter,” in Proceedings 6th Conference IEEE Power Electronics Drive Systems Technologies, Tehran, 2015, pp. 369–74.
  • M. Siami, H. K. Savadkoohi, A. Abbaszadeh, D. A. Khaburi, J. Rodriguez, and M. Rivera, “Predictive torque control of a permanent magnet synchronous motor fed by a matrix converter without weighting factor,” in Proceedings 7th Conference Power Electronics Drive Systems Technologies, Tehran, 2016, pp. 614–19.
  • M. Rivera, C. Rojas, J. Rodriguez, P. Wheeler, B. Wu, and J. Espinoza, “Predictive current control with input filter resonance mitigation for a direct matrix converter,” IEEE Trans. Power Electron., Vol. 26, no. 10, pp. 2794–803, Oct. 2011.
  • M. Rivera, J. Rodriguez, P. Wheeler, C. Rojas, A. Wilson, and J. Espinoza, “Control of a matrix converter with imposed sinusoidal source currents,” IEEE Trans. Ind. Electron., Vol. 59, no. 4, pp. 1939–49, Apr. 2012.
  • O. Gulbudak and E. Santi, “FPGA-based model predictive controller for direct matrix converter,” IEEE Trans. Ind. Electron., Vol. 63, no. 7, pp. 4560–70, Jul. 2016.
  • M. Rivera, A. Wilson, C. A. Rojas, J. Rodriguez, J. R. Espinoza, P. W. Wheeler, and L. Empringham, “A comparative assessment of model predictive current control and space vector modulation in a direct matrix converter,” IEEE Trans. Ind. Electron., Vol. 60, no. 2, pp. 578–88, Feb. 2013.
  • R. Vargas, U. Ammann, B. Hudoffsky, J. Rodriguez, and P. Wheeler, “Predictive torque control of an induction machine fed by a matrix converter with reactive input power control,” IEEE Trans. Power Electron., Vol. 25, no. 6, pp. 1426–38, Jun. 2010.
  • R. Vargas, J. Rodriguez, C. A. Rojas, and M. Rivera, “Predictive control of an induction machine fed by a matrix converter with increased efficiency and reduced common-mode voltage,” IEEE Trans. Energy Convers., Vol. 29, no. 2, pp. 473–85, Jun. 2014.
  • J. Lei, B. Zhou, J. Wei, J. Bian, Y. Zhu, J. Yu, and Y. Yang, “Predictive power control of matrix converter with active damping function,” IEEE Trans. Ind. Electron., Vol. 63, no. 7, pp. 4550–9, Jul. 2016.
  • J. Lei, B. Zhou, X. Qin, J. Wei, and J. Bian, “Active damping control strategy of matrix converter via modifying input reference currents,” IEEE Trans. Power Electron., Vol. 30, no. 9, pp. 5260–71, Sep. 2015.
  • M. Siami, D. A. Khaburi, M. Rivera, and J. Rodriguez, “A computationally efficient lookup table based FCS-MPC for PMSM drives Fed by matrix converters,” IEEE Trans. Ind. Electron., Vol. 64, no. 10, pp. 7645–54, Oct. 2017.
  • M. Siami, D. A. Khaburi, and J. Rodriguez, “Simplified finite control set – model predictive control for matrix converter – fed PMSM drives,” IEEE Trans. Power Electron., Vol. 33, no. 3, pp. 2438–46, March 2018.
  • M. Siami, M. Amiri, H. K. Savadkoohi, R. Rezavandi, and S. Valipour, “Simplified predictive torque control for a PMSM drive fed by a matrix converter with imposed input current,” IEEE J. Emerg. Sel. Top. Power Electron., Vol. 6, no. 4, pp. 1641–9, Dec. 2018.
  • M. Uddin, S. Mekhilef, M. Rivera, and J. Rodriguez, “Imposed weighting factor optimization method for torque ripple reduction of IM fed by indirect matrix converter with predictive control algorithm,” J. Electr. Eng. Technol., Vol. 10, no. 1, pp. 227–42, Jan. 2015.
  • M. Uddin, S. Mekhilef, M. Mubin, M. Rivera, and J. Rodriguez, “Model predictive torque ripple reduction with weighting factor optimization fed by an indirect matrix converter,” Electr. Power Compon. Syst., Vol. 42, no. 10, pp. 1059–69, June 2014.
  • C. Xia, J. Zhao, Y. Yan, and T. Shi, “A novel direct torque and flux control method of matrix converter fed PMSM drives,” IEEE Trans. Power Electron., Vol. 29, no. 10, pp. 5417–30, Oct. 2014.
  • R. R. Joshi, R. A. Gupta, and A. K. Wadhawani, “ Artificial Intelligence based DTC controlled matrix converter cage drive system,” IETE J. Res., Vol. 53, no. 4, pp. 303–13, July/Aug. 2007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.