121
Views
5
CrossRef citations to date
0
Altmetric
Articles

Adaptive Type-2 Fuzzy Control for Regulation of Glucose Level in Type 1 Diabetes

, &

References

  • W. H. Organization and W. H. Organization. “Diabetes fact sheet No. 312,” Geneva, Switzerland. Available: http://www.who.int/mediacentre/factsheets/fs312/en/index.html [accessed 2013-02-12][WebCite Cache ID 6ENYIOJ6e], 2013.
  • F. S. Grodins. Control Theory and Biological Systems. New York: Columbia University Press, 1963.
  • M. C. Khoo, Physiological Control Systems. Analysis, Simulation, Estimation. New York: Wiley, 2000.
  • P. A. Iglesias, and B. P. Ingalls. Control Theory and Systems Biology. Cambridge, MA: MIT Press, 2010.
  • W. Spencer, “A review of programmed insulin delivery systems,” IEEE Trans. Biomed. Eng., Vol. 3, pp. 237–251, 1981. doi: https://doi.org/10.1109/TBME.1981.324696
  • M. Franetzki, K. Prestele, and H. Kresse, “Technological problems of miniaturized insulin dosing devices and some approaches to clinical trials,” Horm. Metab. Res. Suppl., Vol. 8, pp. 58–65, 1979.
  • J. L. Hauser (inventor) and J.-L. Hauser (assignee), “Programmable portable infusion pump system,” United State patent US 5,429,602, July 4, 1995.
  • S. Shimoda, et al., “Closed-loop subcutaneous insulin infusion algorithm with a short-acting insulin analog for long-term clinical application of a wearable artificial endocrine pancreas,” Front. Med. Biol. Eng.: Int. J. Japan Soc. Med. Electron. Biol. Eng., Vol. 8, no. 3, pp. 197–211, 1997.
  • R. S. Parker, F. J. Doyle, and N. A. Peppas, “A model-based algorithm for blood glucose control in type I diabetic patients,” IEEE Trans. Biomed. Eng., Vol. 46, no. 2, pp. 148–157, 1999. doi: https://doi.org/10.1109/10.740877
  • R. Dudde, T. Vering, G. Piechotta, and R. Hintsche, “Computer-aided continuous drug infusion: Setup and test of a mobile closed-loop system for the continuous automated infusion of insulin,” IEEE Trans. Inf. Technol. Biomed., Vol. 10, no. 2, pp. 395–402, 2006. doi: https://doi.org/10.1109/TITB.2006.864477
  • Z. Trajanoski, and P. Wach, “Neural predictive controller for insulin delivery using the subcutaneous route,” IEEE Trans. Biomed. Eng., Vol. 45, no. 9, pp. 1122–1134, 1998. doi: https://doi.org/10.1109/10.709556
  • M. F. Alamaireh. “A predictive neural network control approach in diabetes management by insulin administration,” in Information and Communication Technologies, 2006. ICTTA'06. 2nd, 2006, vol. 1, pp. 1618–1623: IEEE, 2006.
  • S. F. B. Jaafar, and D. M. Ali. “Diabetes mellitus forecast using artificial neural network (ANN),” in Sensors and the International Conference on New Techniques in Pharmaceutical and Biomedical Research, 2005 Asian Conference on, 2005, pp. 135–139: IEEE, 2005.
  • J. Chen, K. Cao, Y. Sun, Y. Xiao, and X. K. Su, “Continuous drug infusion for diabetes therapy: A closed-loop control system design,” EURASIP J. Wirel. Commun. Netw., Vol. 2008, no. 1, pp. 495185, 2007. doi: https://doi.org/10.1155/2008/495185
  • D. N. M. Abadi, M. H. Khooban, A. Alfi, and M. Siahi, “Design of optimal self-regulation Mamdani-type fuzzy inference controller for type I diabetes mellitus,” Arab. J. Sci. Eng., Vol. 39, no. 2, pp. 977–986, 2014. doi: https://doi.org/10.1007/s13369-013-0673-3
  • G. Steil, K. Rebrin, and J. J. Mastrototaro, “Metabolic modelling and the closed-loop insulin delivery problem,” Diabetes Res. Clin. Pract., Vol. 74, pp. S183–S186, 2006. doi: https://doi.org/10.1016/S0168-8227(06)70028-6
  • R. N. Mishra, and K. B. Mohanty, “Design and implementation of a feedback linearization controlled IM drive via simplified neuro-fuzzy approach,” IETE. J. Res., Vol. 64, no. 2, pp. 209–230, 2018. doi: https://doi.org/10.1080/03772063.2017.1351321
  • E. Teufel, M. Kletting, W. G. Teich, H.-J. Pfleiderer, and C. Tarin-Sauer. “Modelling the glucose metabolism with backpropagation through time trained Elman nets,” in Neural Networks for Signal Processing, 2003. NNSP'03. 2003 IEEE 13th Workshop on, pp. 789–798: IEEE, 2003.
  • J. Yadav, A. Rani, and V. Singh, “Performance analysis of fuzzy-PID controller for blood glucose regulation in type-1 diabetic patients,” J. Med. Syst., Vol. 40, no. 12, pp. 254, 2016. doi: https://doi.org/10.1007/s10916-016-0602-6
  • A. Devanshu, M. Singh, and N. Kumar, “Sliding mode control of induction motor drive based on feedback linearization,” IETE. J. Res., 1–14, 2018.
  • D. D. Sylvester, and R. K. Munje. “Back stepping SMC for blood glucose control of type-1 diabetes mellitus patients,” 2017.
  • A. K. Patra, A. K. Mishra, and P. K. Rout, “Backstepping model predictive controller for blood glucose regulation in type-1 diabetes patient,” IETE. J. Res., Vol. 2018, pp. 1–15, 2018.
  • T.-C. Lin, Y.-J. Huang, I. Josephine, J. Lin, V. E. Balas, and S. Srinivasan. “Genetic algorithm-based interval type-2 fuzzy model identification for people with type-1 diabetes,” in Fuzzy Systems (FUZZ-IEEE), 2017 IEEE International Conference on, 2017, pp. 1–6: IEEE, 2017.
  • A. Nath, R. Dey, and V. E. Balas, “Closed loop blood glucose regulation of type1 diabetic patient using Takagi-Sugeno fuzzy logic control,” in Soft Computing Applications. SOFA 2016. Advances in Intelligent Systems and Computing, Vol. 634, V. Balas, L. Jain, and M. Balas, Eds. Cham: Springer, 2018.
  • N. S. Bajestani, A. V. Kamyad, E. N. Esfahani, and A. Zare, “Nephropathy forecasting in diabetic patients using a GA-based type-2 fuzzy regression model,” Biocybernet. Biomed. Eng., Vol. 37, no. 2, pp. 281–289, 2017. doi: https://doi.org/10.1016/j.bbe.2017.01.003
  • F. Munir, I. Ahmad, and N. Naz, “Backstepping based automatic blood glucose nonlinear controller for diabetes mellitus type 1 patients,” Adv. Sci. Lett., Vol. 22, no. 10, pp. 2652–2656, 2016. doi: https://doi.org/10.1166/asl.2016.7011
  • S. M. Gharghory, and D. A. El-Dib, “Fuzzy control system for regulating the blood glucose level of diabetes patients implemented on FPGA,” J. Circuits Syst. Comput., Vol. 25, no. 12, pp. 1650161, 2016. doi: https://doi.org/10.1142/S0218126616501619
  • A. Mohammadzadeh, et al., “Observer-based method for synchronization of uncertain fractional order chaotic systems by the use of a general type-2 fuzzy system,” Appl. Soft. Comput., Vol. 49, pp. 544–560, 2016. doi: https://doi.org/10.1016/j.asoc.2016.08.016
  • L. Cervantes, O. Castillo, D. Hidalgo, and R. Martinez-Soto, “Fuzzy dynamic adaptation of gap generation and mutation in genetic optimization of type 2 fuzzy controllers,” Adv. Oper. Res., Vol. 2018, 2018. https://doi.org/https://doi.org/10.1155/2018/9570410.
  • O. Castillo, and L. Amador-Angulo, “A generalized type-2 fuzzy logic approach for dynamic parameter adaptation in bee colony optimization applied to fuzzy controller design,” Inf. Sci. (NY), Vol. 460, pp. 476–496, 2018. doi: https://doi.org/10.1016/j.ins.2017.10.032
  • L. Amador-Angulo, and O. Castillo, “A new fuzzy bee colony optimization with dynamic adaptation of parameters using interval type-2 fuzzy logic for tuning fuzzy controllers,” Soft. Comput., Vol. 22, no. 2, pp. 571–594, 2018. doi: https://doi.org/10.1007/s00500-016-2354-0
  • C. Caraveo, F. Valdez, and O. Castillo, “A new meta-heuristics of optimization with dynamic adaptation of parameters using type-2 fuzzy logic for trajectory control of a mobile robot,” Algorithms, Vol. 10, no. 3, pp. 85, 2017. doi: https://doi.org/10.3390/a10030085
  • K. Tai, et al., “Review of recent type-2 fuzzy controller applications,” Algorithms, Vol. 9, no. 2, pp. 39, 2016. doi: https://doi.org/10.3390/a9020039
  • O. Castillo, et al., “A comparative study of type-1 fuzzy logic systems, interval type-2 fuzzy logic systems and generalized type-2 fuzzy logic systems in control problems,” Inf. Sci. (NY), Vol. 354, pp. 257–274, 2016. doi: https://doi.org/10.1016/j.ins.2016.03.026
  • M. A. Sanchez, O. Castillo, and J. R. Castro, “Generalized type-2 fuzzy systems for controlling a mobile robot and a performance comparison with interval type-2 and type-1 fuzzy systems,” Expert. Syst. Appl., Vol. 42, no. 14, pp. 5904–5914, 2015. doi: https://doi.org/10.1016/j.eswa.2015.03.024
  • A. Mohammadzadeh, and S. Ghaemi, “Optimal synchronization of fractional-order chaotic systems subject to unknown fractional order, input nonlinearities and uncertain dynamic using type-2 fuzzy CMAC,” Nonlinear Dyn., Vol. 88, no. 4, pp. 2993–3002, 2017. doi: https://doi.org/10.1007/s11071-017-3427-z
  • M. Nie, and W. W. Tan. “Towards an efficient type-reduction method for interval type-2 fuzzy logic systems,” in Fuzzy Systems, 2008. FUZZ-IEEE 2008.(IEEE World Congress on Computational Intelligence). IEEE International Conference on, 2008, pp. 1425-1432: IEEE, 2008.
  • M. PENET, “Commande Prédictive Nonlinéaire Robuste par Méthode de Point Selle en Optimisation sous Contraintes: Analyse de Stabilité et Application au Diabete de type,” Citeseer, 2014. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.629.8074&rep=rep1&type=pdf

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.