56
Views
0
CrossRef citations to date
0
Altmetric
Articles

Performance and Power Optimization for Intercalation Doped Multilayer Graphene Nanoribbon Interconnects

&

References

  • International Technology Roadmap for Semiconductors (ITRS-2015) Reports, [Online]. Available: http://www.itrs2.net/itrs-reports.html.
  • J. D. Meindl, “Beyond Moore’s Law: The interconnect era,” Comput. Sci. Eng., Vol. 5, no. 1, pp. 20–24, 2003. doi: https://doi.org/10.1109/MCISE.2003.1166548
  • Sungjun Im, N. Srivastava, K. Banerjee, and K. E. Goodson, “Scaling analysis of multilevel interconnect temperatures for high-performance ICs,” IEEE Trans. Electron Devices, Vol. 52, no. 12, pp. 2710–2719, 2005.
  • A. A. Vyas, C. Zhou, and C. Y. Yang, “On-chip interconnect conductor materials for end-of-roadmap technology nodes,” IEEE Trans. Nanotechnol., Vol. 17, no. 1, pp. 4–10, Jan. 2018. doi: https://doi.org/10.1109/TNANO.2016.2635583
  • X. Du, I. Skachko, A. Barker, and E.Y. Andrei, “Approaching ballistic transport in suspended graphene,” Nat. Nanotechnol., Vol. 3, pp. 491, 2008. doi: https://doi.org/10.1038/nnano.2008.199
  • N. C. Wang, S. Sinha, B. Cline, C. D. English, G. Yeric, and E. Pop, “Replacing copper interconnects with graphene at a 7-nm node,” IEEE International Interconnect Technology Conference (IITC), pp. 1–3, Hsinchu, 2017.
  • H. Zhang, M. Tang, and J. Mao, “Electro-thermal simulation of graphene nanoribbon interconnects,” International Applied Computational Electromagnetics Society Symposium (ACES), pp. 1–2, Suzhou, 2017.
  • A. Naeemi and J. D. Meindl, “Performance benchmarking for graphene nanoribbon, carbon nanotube, and Cu interconnects,” 2008 International Interconnect Technology Conference, Burlingame, CA, USA, 2008, pp. 183–185.
  • C. Faugeras, A. Nerriere, M. Potemski, A. Mahmood, E. Dujardin, C. Berger, and W. A. de Heer, “Few-layer graphene on SIC, pyrolitic graphite, and graphene: A Raman scattering study,” Appl. Phys. Lett., Vol. 92, no. 1, p. 011914, Jan. 2008. doi: https://doi.org/10.1063/1.2828975
  • A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. [Online], Vol. 9, no. 1, pp. 30–35, Jan. 2009. doi: https://doi.org/10.1021/nl801827v
  • C. Xu, H. Li, and K. Banerjee, “Modeling, analysis, and design of graphene nanoribbon interconnects,” IEEE Trans. Electron Devices, Vol. 56, no. 8, pp. 1567–1578, 2009. doi: https://doi.org/10.1109/TED.2009.2024254
  • A. Naeemi and J. D. Meindl, “Compact physics-based circuit models for graphene nanoribbon interconnects,” IEEE Trans. Electron Devices, Vol. 56, no. 9, pp. 1822–1833, 2009.
  • L. Qian, Y. Xia, and G. Shi, “Study of crosstalk effect on the propagation characteristics of coupled MLGNR interconnects,” IEEE Trans. Nanotechnol., Vol. 15, no. 5, pp. 810–819, 2016. doi: https://doi.org/10.1109/TNANO.2016.2586920
  • M. Sahoo, and H. Rahaman, “Modeling and analysis of crosstalk induced overshoot/undershoot effects in multilayer graphene nanoribbon interconnects and its impact on gate oxide reliability,” Microelectron. Reliab., Vol. 63, pp. 231–238, 2016. doi: https://doi.org/10.1016/j.microrel.2016.06.017
  • M. Sahoo, P. Ghosal, and H. Rahaman, “Modeling and analysis of crosstalk induced effects in multiwalled carbon nanotube bundle interconnects: An ABCD parameter-based approach,” IEEE Trans. Nanotechnol., Vol. 14, no. 2, pp. 259–274, Mar. 2015. doi: https://doi.org/10.1109/TNANO.2014.2388252
  • J. Jiang, J. Kang, J. H. Chu, and K. Banerjee, “All-carbon interconnect scheme integrating graphene-wires and carbon-nanotube-vias,” IEEE International Electron Devices Meeting (IEDM), pp. 14.3.1-14.3.4, San Francisco, CA, 2017.
  • W. S. Zhao et al., “Vertical graphene nanoribbon interconnects at the end of the roadmap”, IEEE Trans. Electron Devices, Vol. 65, no. 6, pp. 2632–2637, June 2018. doi: https://doi.org/10.1109/TED.2018.2822664
  • Z. H. Cheng et al., “Investigation of copper-carbon nanotube composites as global VLSI interconnects,” IEEE Trans. Nanotechnol., Vol. 16, no. 6, pp. 891–900, Nov. 2017. doi: https://doi.org/10.1109/TNANO.2017.2756928
  • W. S. Zhao, D. W. Wang, G. Wangand, and W. Y. Yin, “Electrical modeling of on-chip Cu-graphene heterogeneous interconnects,” IEEE Electron Device Lett., Vol. 36, no. 1, pp. 74–76, Jan. 2015.
  • J. Jiang, J. Kang, W. Cao, X. Xie, Haojun Zhang, J. Hwan Chu, W. Liu, and K. Banerjee, “Intercalation doped multilayer-graphene-nanoribbons for next-generation interconnects,” Nano Lett., Vol. 17, pp. 1482–1488, 2017.
  • B. Kumari and M. Sahoo, “Thickness optimization for intercalation doped multilayer graphene nanoribbon interconnects,” 2018 4th International Conference on Devices, Circuits and Systems (ICDCS), Coimbatore, India, 2018, pp. 207–211.
  • E. R. Falardeau, L. R. Hanlon, and T. E. Thompson, “Direct synthesis of stage 1–3 intercalation compounds of arsenic pentafluoride in graphite,” inorg. Chem, Vol. 17, no. 2, pp. 301–303, Feb 1978. doi: https://doi.org/10.1021/ic50180a023
  • V. Kumar, S. Rakheja, and A. Naeemi, “Performance and energy-per-bit modeling of multilayer graphene nanoribbon conductors,” IEEE Trans. Electron Devices, Vol. 59, no. 10, pp. 2753–2761, Oct. 2012. doi: https://doi.org/10.1109/TED.2012.2208753
  • M. Sahoo, H. Rahaman, and B. Bhattacharya, “On the suitability of single-walled carbon nanotube bundle interconnects for high-speed and power-efficient applications,” J. Low Power Electron., Vol. 10, pp. 479–494, Sep. 2014. doi: https://doi.org/10.1166/jolpe.2014.1339
  • V. R. Kumar, M. K. Majumder, N. R. Kukkam, and B. K. Kaushik, “Time and frequency domain analysis of MLGNR interconnects,” IEEE Trans. Nanotechnology, Vol. 14, no. 3, pp. 484–492, May 2015. doi: https://doi.org/10.1109/TNANO.2015.2408353

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.