167
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

Classification of Nonlinear Features of Uterine Electromyogram Signal Towards the Prediction of Preterm Birth

, &

References

  • M. C. Smid, E. M. Stringer, and J. S. Stringer, “A worldwide epidemic: the problem and challenges of preterm birth in low-and middle-income countries,” Am. J. Perinatol., Vol. 33, no. 03, pp. 276–289, Feb. 2016. doi: 10.1055/s-0035-1571199
  • M. Lucovnik, et al., “Use of uterine electromyography to diagnose term and preterm labor,” Acta Obstet. Gynecol. Scand., Vol. 90, no. 2, pp. 150–157, Feb. 2011. doi: 10.1111/j.1600-0412.2010.01031.x
  • B. Moslem, M. Diab, M. Khalil, and C. Marque, “Combining data fusion with multiresolution analysis for improving the classification accuracy of uterine EMG signals,” EURASIP J. Adv. Signal Process., Vol. 2012, no. 1, pp. 167, Dec. 2012. doi: 10.1186/1687-6180-2012-167
  • S. M. Naeem, A. F. Seddik, and M. A. Eldosoky, “New technique based on uterine electromyography nonlinearity for preterm delivery detection,” J. Eng. Technol. Res., Vol. 6, no. 7, pp. 107–114, Nov. 2014.
  • T. Y. Euliano, M. T. Nguyen, S. Darmanjian, S. P. McGorray, N. Euliano, A. Onkala, and A. R. Gregg, “Monitoring uterine activity during labor: a comparison of 3 methods,” Am. J. Obstet. Gynecol., Vol. 208, no. 1, pp. 66.e1–66.e6, Jan. 2013. doi: 10.1016/j.ajog.2012.10.873
  • G. Fele-Žorž, G. Kavšek, Ž Novak-Antolič, and F. Jager, “A comparison of various linear and non-linear signal processing techniques to separate uterine EMG records of term and pre-term delivery groups,” Med. Biol. Eng. Comput., Vol. 46, no. 9, pp. 911–922, Sep. 2008. doi: 10.1007/s11517-008-0350-y
  • I. O. Idowu, et al., “Advance artificial neural network classification techniques using EHG for detecting preterm births.” Complex, Intelligent and Software Intensive Systems (CISIS), 2014 Eighth International Conference on. IEEE, Jul. 2014, pp. 95–100.
  • I. O. Idowu, et al., “Artificial Intelligence for Detecting Preterm Uterine Activity in Gynecology and Obstetric Care.” Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing (CIT/IUCC/DASC/PICOM), 2015 IEEE International Conference on. IEEE, Oct. 2015, pp. 215–220.
  • A. J. Hussain, P. Fergus, H. Al-Askar, D. Al-Jumeily, and F. Jager, “Dynamic neural network architecture inspired by the immune algorithm to predict preterm deliveries in pregnant women,” Neurocomputing, Vol. 151, pp. 963–974, Mar. 2015. doi: 10.1016/j.neucom.2014.03.087
  • P. Shaniba Asmi, K. Subramaniam, and N. V. Iqbal, “A review of significant researches on prediction of preterm birth using uterine electromyogram signal,” Future Gener. Comput. Syst., Vol. 98, pp. 135–143, Sep. 2019. doi: 10.1016/j.future.2018.10.033
  • A. L. Goldberger, et al., “Physiobank, PhysioToolkit, and PhysioNet,” PhysioBank, PhysioToolkit, and Physionet. Circulation, Vol. 101, no. 23, pp. e215–e220, 2000 (June 13). PMID: 10851218; DOI: 10.1161/01.CIR.101.23.e215.
  • S. M. Naeem, A. F. Seddik, and M. A. Eldosoky, “New technique based on uterine electromyography nonlinearity for preterm delivery detection,” J. Eng. Technol. Res., Vol. 6, no. 7, pp. 107–114, Nov. 2014.
  • H. Li, X. Wang, L. Chen, and E. Li, “Denoising and R-peak detection of electrocardiogram signal based on EMD and improved approximate envelope,” Circuits Syst. Signal Process., Vol. 33, no. 4, pp. 1261–1276, Apr. 2014. doi: 10.1007/s00034-013-9691-3
  • H. Li, and X. Wang, “Detection of electrocardiogram characteristic points using lifting wavelet transform and Hilbert transform,” Trans. Inst. Meas. Control, Vol. 35, no. 5, pp. 574–582, Jul. 2013. doi: 10.1177/0142331212460720
  • K. H. Ting, P. C. W. Fung, C. Q. Chang, and F. H. Y. Chan, “Automatic correction of artifact from single-trial event-related potentials by blind source separation using second order statistics only,” Med. Eng. Phys., Vol. 28, no. 8, pp. 780–794, Oct. 2006. doi: 10.1016/j.medengphy.2005.11.006
  • H. Li, H. Liang, C. Miao, L. Cao, X. Feng, C. Tang, and E. Li, “Novel ECG signal classification based on KICA nonlinear feature extraction,” Circuits Syst. Signal Process., Vol. 35, no. 4, pp. 1187–1197, Feb. 2016. doi: 10.1007/s00034-015-0108-3
  • D. Q. Phung, et al., “Using Shannon entropy as EEG signal feature for fast Person identification,” ESANN, Vol. 4, no. 1, pp. 413–418, Apr. 2014.
  • H. Li, X. Feng, L. Cao, E. Li, H. Liang, and X. Chen, “A new ECG signal classification based on WPD and ApEn feature extraction,” Circuits Syst. Signal Process., Vol. 35, no. 1, pp. 339–352, Jan. 2016. doi: 10.1007/s00034-015-0068-7
  • M. J. Rooijakkers, et al., “Low-complexity intrauterine pressure monitoring by Teager energy estimation.” Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual International Conference of the IEEE. IEEE, Jul. 2013, pp. 7424–7427.
  • P. Shaniba Asmi, K. Subramaniam, and N. V. Iqbal, “Entropy based feature extraction of electrohysterogram signal for the prediction of preterm birth,” Indian Journal of Public Health Research & Development, Vol. 9, no. 8, pp. 26–29, Aug. 2018. doi: 10.5958/0976-5506.2018.00689.7
  • D. Kumar, S. P. Arjunan, and B. Aliahmad. Fractals: Applications in Biological Signalling and Image processing. Boca Raton: CRC Press, Feb. 2017.
  • F. Cervantes-De la Torre, et al., “Fractal dimension algorithms and their application to time series associated with natural phenomena,” J. Phys: Conf. Ser., Vol. 475, no. 1, IOP Publishing, 2013.
  • B. Moslem, et al., “Detrended fluctuation analysis of uterine electromyography.” Biomedical Engineering (MECBME), 2011 1st Middle East Conference on. IEEE, Feb. 2011, pp. 450–453.
  • P. Shaniba Asmi, K. Subramaniam, and N. V. Iqbal, “Classification of fractal features of uterine EMG signal for the prediction of preterm birth,” Biomedical and Pharmacology Journal, Vol. 11, no. 1, pp. 369–374, Mar. 2018. doi: 10.13005/bpj/1381
  • P. A. Kaplanis, et al., “Bispectral analysis of surface EMG.” Electrotechnical Conference, 2000. MELECON 2000. 10th Mediterranean. Vol. 2. IEEE, 2000, pp. 770–773.
  • N. Kumar, K. Khaund, and S. M. Hazarika, “Bispectral analysis of EEG for emotion recognition,” Procedia. Comput. Sci., Vol. 84, pp. 31–35, Jan. 2016. doi: 10.1016/j.procs.2016.04.062
  • J. C. Sigl, and N. G. Chamoun, “An introduction to bispectral analysis for the electroencephalogram,” J. Clin. Monit., Vol. 10, no. 6, pp. 392–404, Nov. 1994. doi: 10.1007/BF01618421
  • Y. Ye-Lin, J. Garcia-Casado, G. Prats-Boluda, J. Alberola-Rubio, and A. Perales, “Automatic identification of motion artifacts in EHG recording for robust analysis of uterine contractions,” Comput. Math. Methods. Med., Vol. 2014, pp. 1–11, 2014. doi: 10.1155/2014/470786
  • P. Fergus, P. Cheung, A. Hussain, D. Al-Jumeily, C. Dobbins, S. Iram, and Z. Wei, “Prediction of preterm deliveries from EHG signals using machine Learning,” PLoS One, Vol. 8, no. 10, pp. e77154, Oct. 2013. doi: 10.1371/journal.pone.0077154
  • P. Fergus, I. Idowu, and A. Hussain. “Intelligent Computing in Bioinformatics.” 10th Inter., vol. 8590. Taiyuan, China: Springer, 2014, pp. 309–314.
  • N. V. Iqbal, and K. Subramaniam, “A Review on Upper-Limb Myoelectric Prosthetic Control,” IETE. J. Res., Vol. 64, no. 6, pp. 740–752, Nov. 2017. doi: 10.1080/03772063.2017.1381047
  • Y. Li, X.-D. Wang, M.-L. Luo, K. Li, X.-F. Yang, and Q. Guo, “Epileptic seizure classification of EEGs using time-frequency analysis based multiscale radial basis functions,” IEEE. J. Biomed. Health. Inform., Vol. 22, no. 2, pp. 386–397, Mar. 2017. doi: 10.1109/JBHI.2017.2654479
  • J. Zhang, et al., “PNN for EEG-based emotion recognition.” Systems, Man, and Cybernetics (SMC), 2016 IEEE International Conference on. IEEE, Oct. 2016, pp. 2319–2323.
  • H. Li, D. Yuan, X. Ma, D. Cui, and L. Cao, “Genetic algorithm for the optimization of features and neural networks in ECG signals classification,” Sci. Rep., Vol. 7, pp. 41011, Jan. 2017. doi: 10.1038/srep41011
  • T. W. Karjala, D. M. Himmelblau, and R. Miikkulainen. “Data rectification using recurrent (Elman) neural networks.” Neural Networks, 1992. IJCNN., International Joint Conference on. Vol. 2. IEEE, Jun. 1992, pp. 901–906.
  • P. D. Purnamasari, A. Ratna, and B. Kusumoputro, “Development of filtered bispectrum for EEG signal feature extraction in automatic emotion recognition using artificial neural networks,” Algorithms, Vol. 10, no. 2, pp. 63, Jun. 2017. doi: 10.3390/a10020063
  • T. Koskela, et al., “Time series prediction with multilayer perceptron, FIR and Elman neural networks.” Proceedings of the World Congress on Neural Networks. INNS Press San Diego, USA, Sep. 1996, pp. 491–496.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.