179
Views
12
CrossRef citations to date
0
Altmetric
Review Articles

Impact of Interconnect Spacing on Crosstalk for Multi-layered Graphene Nanoribbon

ORCID Icon, ORCID Icon & ORCID Icon

References

  • G. E. Moore, “Cramming more components onto integrated circuits,” Proc. IEEE, Vol. 86, no. 1, pp. 82–5, 1998. doi: 10.1109/JPROC.1998.658762
  • B. K. Kaushik, M. K. Majumder, and V. R. Kumar, “Carbon nanotube based 3-D interconnects - a reality or a distant dream,” IEEE Circuit. Syst. Mag., Vol. 14, no. 4, pp. 16–35, 2014. doi: 10.1109/MCAS.2014.2360787
  • M. K. Majumder, J. Kumar, and B. K. Kaushik, “Process-induced delay variation in SWCNT, MWCNT, and mixed CNT interconnects,” IETE J. Res., Vol. 61, no. 5, pp. 533–40, 2015. doi: 10.1080/03772063.2015.1025110
  • J. A. Davis, and J. D. Meindl. Interconnect Technology and Design for Gigascale Integration. London: Springer, 2003.
  • F. Kreupl, A. P. Graham, G. S. Duesberg, W. Steinhögl, M. Liebau, E. Unger, and W. Hönlein, “Carbon nanotubes in interconnect applications,” Microelectron. Eng., Vol. 64, pp. 399–408, 2002. doi: 10.1016/S0167-9317(02)00814-6
  • N. Srivastava, and K. Banerjee, “Performance analysis of carbon nanotube interconnects for VLSI applications,” in Proc. IEEE/ACM Intern. Confer. Comput. Aided Design, pp. 383–90, 2005.
  • H. Li, W. Y. Yin, K. Banerjee, and J. F. Mao, “Circuit modeling and performance analysis of multi-walled carbon nanotube interconnects,” IEEE Trans. Electron. Devices, Vol. 55, no. 6, pp. 1328–37, 2008. doi: 10.1109/TED.2008.922855
  • X. Chen, et al., “Fully integrated graphene and carbon nanotube interconnects for gigahertz high-speed CMOS electronics,” in IEEE Trans. Electron. Devices, Vol. 57, no. 11, pp. 3137–43, 2010. doi: 10.1109/TED.2010.2069562
  • A. Behnam, et al., “Transport in nanoribbon interconnects obtained from graphene grown by chemical vapor deposition,” Nano Lett., Vol. 12, no. 9, pp. 4424–30, 2012. doi: 10.1021/nl300584r
  • C. G. Kang, et al., “Effects of multi-layer graphene capping on Cu interconnects,” Nanotechnol., Vol. 24, no. 11, pp. 115707-1–5,2013. doi: 10.1088/0957-4484/24/11/115707
  • P. D. Nguyen, T. C. Nguyen, A. T. Huynh, and S. Skafidas, “High frequency characterization of graphene nanoribbon interconnects,” Materal. Res. Expr., Vol. 1, no. 3, pp. 035009-1–10, 2014.
  • M. Politou, et al., “Single- and multilayer graphene wires as alternative interconnects,” Microelectron. Engineer., Vol. 156, no. C, pp. 131–5, 2016. doi: 10.1016/j.mee.2016.01.002
  • C. S. Lee, et al., “Fabrication of metal/graphene hybrid interconnects by direct graphene growth and their integration properties,” Advan. Electron. Mater., Vol. 4, no. 6, pp. 1700624-1–8, 2018.
  • J. P. Cui, W. S. Zhao, and W. Y. Yin, “Signal transmission analysis of multilayer graphene nano-ribbon (MLGNR) interconnects,” IEEE Trans. Electromagn. Compat., Vol. 54, no. 1, pp. 126–32, 2012. doi: 10.1109/TEMC.2011.2172947
  • W. S. Zhao, and W. Y. Yin, “Signal integrity analysis of graphene nano-ribbon (GNR) interconnects,” IEEE Electric. Design Advan. Packag. Syst. Sympos. (EDAPS), Taipei, pp. 227–30, 2012.
  • W. S. Zhao, and Y. Y. Yin, “Comparative study on multilayer graphene nanoribbon (MLGNR) interconnects,” IEEE Trans. Electromagn. Compat., Vol. 56, no. 3, pp. 638–45, 2014. doi: 10.1109/TEMC.2014.2301196
  • L. Qian, Y. Xia, and G. Shi, “Study of crosstalk effect on the propagation characteristics of coupled MLGNR interconnects,” IEEE Trans. Nanotechnol., Vol. 15, no. 5, pp. 810–9, 2016. doi: 10.1109/TNANO.2016.2586920
  • V. R. Kumbhare, P. P. Paltani, and M. K. Majumder. “Future of graphene based interconnect technology - a reality or a distant dream,” 5th IEEE Uttar Pradesh Section International Conference Electrical and Electronics Computer Engineering (UPCON), Gorakhpur, pp. 1–7, 2018.
  • J. M. Rabaey, A. Chandrakasan, and B. Nikolic. Digital Integrated Circuits: A Design Perspective, 2nd ed., pp. 167–170, 2017.
  • F. de Leon, A. Farazmand, and P. Joseph, “Comparing the T and π equivalent circuits for the calculation of transformer inrush currents,” IEEE Trans. Pow. Delive., Vol. 27, no. 4, pp. 2390–8, 2012. doi: 10.1109/TPWRD.2012.2208229
  • International Technology Roadmap for Semiconductors (ITRS). [Online]. Available: http://www.itrs.net.
  • C. Xu, H. Li, and K. Banerjee, “Modeling, analysis, and design of graphene nano-ribbon interconnects,” IEEE Trans. Electron. Devices, Vol. 56, no. 8, pp. 1567–78, 2009. doi: 10.1109/TED.2009.2024254
  • M. K. Majumder, N. R. Kukkam, and B. K. Kaushik, “Frequency response and bandwidth analysis of multi-layer graphene nanoribbon and multi-walled carbon nanotube interconnects,” IET Micro Nano Lett., Vol. 9, no. 9, pp. 557–60, 2014. doi: 10.1049/mnl.2013.0742
  • D. Fathi, B. Forouzandeh, S. Mohajerzadeh, and R. Sarvari, “Accurate analysis of carbon nanotube interconnects using transmission line model,” IET Micro Nano Lett., Vol. 4, no. 2, pp. 116–21, 2009. doi: 10.1049/mnl.2009.0045
  • S. H. Nasiri, M. K. M. Moravvej-Farshi, and R. Faez, “Stability analysis in graphene nanoribbon interconnects,” IEEE Electron. Device Lett., Vol. 31, no. 12, pp. 1458–60, 2010. doi: 10.1109/LED.2010.2079312
  • J. Jiang, J. Kang, W. Cao, and K. Banerjee. “UCSB graphene nanoribbon interconnect compact model,” nanohub, version 2.0.0, pp. 1–13, 2017.
  • D. A. Areshkin, D. Gunlycke, and C. T. White, “Ballistic transport in graphene nanostrips in the presence of disorder: importance of edge effects,” Nano Lett., Vol. 7, no. 1, pp. 204–10, 2007. doi: 10.1021/nl062132h
  • E. H. Hwang, S. Adam, and S. D. Sarma, “Carrier transport in two-dimensional graphene layers,” Phys. Rev. Lett., vol. 98, no. 18, pp. 186806-1–06-4, 2007. doi: 10.1103/PhysRevLett.98.186806
  • J. Yan, Y. Zhang, P. Kim, and A. Pinczuk, “Electric field effect tuning of electron-phonon coupling in graphene,” Phys Rev Lett., Vol. 98, no. 16, pp. 166802-1–02-4, 2007. doi: 10.1103/PhysRevLett.98.166802
  • A. Hazra, and S. Basu, “Graphene nanoribbon as potential on-chip interconnect material- a review,” C. J. Carbon Res., Vol. 4, no. 49, pp. 1–27, 2018.
  • A. K. Nishad, and R. Sharma, “Analytical time-domain models for performance optimization of multilayer GNR interconnects,” IEEE J. Select. Topics Quant. Electron., Vol. 20, no. 1, pp. 17–24, 2014. doi: 10.1109/JSTQE.2013.2272458
  • J. L. Xia, F. Chen, J. H. Li, and N. J. Tao, “Measurement of the quantum capacitance of graphene,” Nature Nanotechnol., Vol. 5, pp. 505–9, Jul. 2009.
  • F. Stellari, and A. L. Lacaita, “New formulas of interconnect capacitances based on results of conformal mapping method,” IEEE Trans. Electron. Devices, Vol. 47, no. 1, pp. 222–31, 2000. doi: 10.1109/16.817589
  • M. K. Majumder, B. K. Kaushik, and S. K. Manhas, “Analysis of delay and dynamic crosstalk in bundled carbon nanotube interconnects,” IEEE Trans. Electromagn. Compat., Vol. 56, no. 6, pp. 1666–73, 2014. doi: 10.1109/TEMC.2014.2318017
  • M. K. Majumder, P. K. Das, and B. K. Kaushik, “Delay and crosstalk reliability issues in mixed MWCNT bundle interconnects,” Microelectron. Reliab., Vol. 54, no. 11, pp. 2570–7, 2014. doi: 10.1016/j.microrel.2014.04.008

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.