97
Views
4
CrossRef citations to date
0
Altmetric
Review Articles

Design of a New Optimized Universal Logic Gate for Quantum-Dot Cellular Automata

&

References

  • International Technology Roadmap for Semiconductors (ITRS). Available: http://www.itrs.net 2015.
  • C. S. Lent, and P. D. Tougaw, “A device architecture for computing with quantum dots,” Proc. IEEE, Vol. 85, no. 4, pp. 541–57, 1997. doi: 10.1109/5.573740
  • C. G. Smith, “Nanotechnology: Computation without current,” Science, Vol. 284, no. 5412, pp. 274–4, 1999. doi: 10.1126/science.284.5412.274
  • C. S. Lent, B. Isaksen, and M. Lieberman, “Molecular quantum-Dot cellular automata,” J. Am. Chem. Soc., Vol. 125, no. 4, pp. 1056–63, 2003. doi: 10.1021/ja026856g
  • M. Mustafa, and M. R. Beigh, “Design and implementation of quantum cellular automata based novel parity generator and checker circuits with minimum complexity and cell count,” IJPAP, Vol. 51, no. 01, pp. 60–6, 2013.
  • X. Yang, C. Li, X. Zhao, and N. Zhang, “Design and simulation of sequential circuits in quantum-dot cellular automata: Falling edge-triggered flip-flop and counter study,” Microelectron. J., Vol. 41, no. 1, pp. 56–63, 2010. doi: 10.1016/j.mejo.2009.12.008
  • S. Ying, T. Pei, and L. Xiao. “Efficient design of QCA optimal universal logic gate ULG.2 and its application,” 1st Inter. Conf. ICCASM, Taiyuan, 2010, pp. 392–6.
  • N. Gupta, S. Shrivastava, N. Patidar, S. Katiyal, and K. K. Choudhary, “Design of one bit arithmetic logic unit (ALU) in QCA,” Int. J. Comput. Appl. Eng. Sci., Vol. 2, no. 3, pp. 281–5, 2012.
  • T. N. Sasamal, A. K. Singh, and A. Mohan, “Efficient design of reversible alu in quantum-dot cellular automata,” Optik. (Stuttg), Vol. 127, no. 15, pp. 6172–82, 2016. doi: 10.1016/j.ijleo.2016.04.086
  • N. G. Rao, P. C. Srikanth, and P. Sharan, “A novel quantum dot cellular automata for 4-bit code converters,” Optik. (Stuttg), Vol. 127, no. 10, pp. 4246–9, 2016. doi: 10.1016/j.ijleo.2015.12.119
  • M. Hayati, and A. Rezaei, “An efficient and optimized multiplexer design for quantum-dot cellular automata,” J. Comput. Theor. Nanos., Vol. 11, pp. 297–302, 2014. doi: 10.1166/jctn.2014.3206
  • M. Momenzadeh, J. Huang, M. B. Tahoori, and F. Lombardi, “Characterization, test, and logic synthesis of and-or-inverter (AOI) gate design for QCA implementation,” IEEE Trans. Comput-Aided Design Integr. Circ. Syst., Vol. 24, pp. 1881–93, 2005. doi: 10.1109/TCAD.2005.852667
  • F. Lombardi, and J. Huang. “Design and test of digital circuits by quantum-dot cellular”, Artech House, Northeastern University, September 25, 2007.
  • K. Navi, R. Farazkish, S. Sayedsalehi, and M. Rahimi Azghadi, “A new quantum-dot cellular automata full-adder,” Microelectron. J., Vol. 41, no. 12, pp. 820–6, 2010. doi: 10.1016/j.mejo.2010.07.003
  • M. Hayati, and A. Rezaei, “Design and optimization of full comparator based on quantum-dot cellular automata,” ETRI J., Vol. 34, no. 2, pp. 284–7, 2012. doi: 10.4218/etrij.12.0211.0258
  • S. Bhanja, M. Ottavi, S. Pontarelli, and F. Lombardi, “QCA circuits for robust coplanar crossing, emerging nanotechnologies,” Front. Electron. Test., Vol. 37, pp. 227–49, 2008. doi: 10.1007/978-0-387-74747-7_8
  • M. M. Arjmand, M. Soryani, and K. Navi, “Coplanar wire crossing in quantum cellular automata using a ternary cell circuits,” IET Circ. Device. Syst., Vol. 7, no. 5, pp. 263–72, 2013. doi: 10.1049/iet-cds.2012.0366
  • QCADesigner, 2016, Available: http://www.mina.ubc.ca/qcadesigner.
  • J. G. Taylor. Neural Networks and their Applications. West sussex, UK: John Wiley & Sons Ltd, 1996.
  • A. R. Gallant, and H. White, “On learning the derivatives of an unknown mapping with multilayer feed forward networks,” Neural Networ., Vol. 5, pp. 129–38, 1992. doi: 10.1016/S0893-6080(05)80011-5
  • V. C. Teja, S. Polisetti, and S. Kasavajjala. “QCA based multiplexing of 16 arithmetic & logical subsystems-a paradigm for nano computing,” The 3rd IEEE Int. Conf. on Nano/Micro Engineered and Molecular Systems, pp. 758-763, 2008.
  • S. Roy, and B. Saha, “Minority gate oriented logic design with quantum-dot cellular automata,” LNCS, Vol. 4173, pp. 646–56, 2006.
  • S. K. lakshmi, and G. Athisha, “Efficient design of Logical structures and functions using nanotechnology based quantum Dot cellular automata design,” Int. J. Comput. Appl., Vol. 3, no. 5, pp. 35–42, 2010.
  • Z. Safikhani, M. Pooyan, S. Safikhani, “Overview of quantum-dot cellular automata as replacement for CMOS VLSI technology,” Sci. Road Publ. Corporation, Vol. 10, pp. 60–6, 2011.
  • T. Raviraj. “Design, implementation, and test of next generation FPGAs using quantum-dot cellular automata technology,” Mse. Thesis, The University of Toledo, pp. 297–302, 2011.
  • M. Hayati, and A. Rezaei, “Design of novel efficient XOR gates for quantum-dot cellular automata,” J. Comput. Theor. Nanos., Vol. 10, no. 3, pp. 643–7, 2013. doi: 10.1166/jctn.2013.2748
  • R. Zhang, “A method of majority logic reduction for quantum cellular automata,” IEEE Trans. Nanotech., Vol. 3, no. 4, pp. 443–50, 2004. doi: 10.1109/TNANO.2004.834177
  • K. Kong, Y. Shang, and R. Lu, “An optimized majority logic synthesis methodology for quantum-dot cellular automata,” IEEE Trans. Nanotech., Vol. 9, pp. 170–83, 2010. doi: 10.1109/TNANO.2009.2028609

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.