103
Views
2
CrossRef citations to date
0
Altmetric
Review Articles

An Ensemble Approach for Classification of Breast Histopathology Images

&

References

  • R. L. Siegel, K. D. Miller, and A. Jemal, “Cancer statistics, 2016,” CA Cancer J. Clin., Vol. 66, no. 1, pp. 7–30, 2016. doi: 10.3322/caac.21332
  • IARC-2013. Globocan 2012: estimated cancer incidence, mortality and prevalence worldwide in 2012.
  • C. E. DeSantis, J. Ma, A. Goding Sauer, L. A. Newman, and A. Jemal, “Breast cancer statistics, 2017, racial disparity in mortality by state,” CA Cancer J. Clin., Vol. 67, no. 6, pp. 439–48, 2017. doi: 10.3322/caac.21412
  • H. J. Bloom, and W. W. Richardson, “Histological grading and prognosis in breast cancer: a study of 1409 cases of which 359 have been followed for 15 years,” Br. J. Cancer, Vol. 11, no. 3, pp. 359–77, 1957. doi: 10.1038/bjc.1957.43
  • C. Genestie, et al., “Comparison of the prognostic value of Scarff–Bloom–Richardson and Nottingham histological grades in a series of 825 cases of breast cancer: major importance of the mitotic count as a component of both grading systems,” Anticancer Res., Vol. 18, no. 1B, pp. 571–6, 1998.
  • M. N. Gurcan, et al., “Histopathological image analysis: a review,” IEEE Rev. Biomed. Eng. 2, pp. 147–71, 2009. doi: 10.1109/RBME.2009.2034865
  • V. Uhlmann, S. Singh, and A. E. Carpenter, “CP-CHARM: segmentation-free image classification made accessible,” BMC Bioinf., Vol. 17, no. 1, p. 51, 2016. doi: 10.1186/s12859-016-0895-y
  • A. Vailaya, et al., “Image classification for content-based indexing,” IEEE Trans.Image Process, Vol. 10, no. 1, pp. 117–30, 2001. doi: 10.1109/83.892448
  • R. C. Gonzalez, and R. E. Woods. Digital Image Processing, 2nd ed. Boston: Addison-Wesley Longman Publishing Co., Inc., 2001.
  • L. Roux, et al., “Mitosis detection in breast cancer histological images:an ICPR 2012 contest,” J. Pathol. Inf, Vol. 4, no. 1, pp. 8–14, 2013. doi: 10.4103/2153-3539.112693
  • T. H. Vu, et al., “Histopathological image classification using discriminative feature-oriented dictionary learning,” IEEE Trans. Med. Imaging, Vol. 35, no. 3, pp. 738–51, 2016. doi: 10.1109/TMI.2015.2493530
  • S. Otalora, et al., “Combining unsupervised feature learning and Riesz wavelets for histopathology image representation: application to identifying anaplastic medullo-blastoma Munich,” in International Conference on Medical Image Computing and Computer Assisted Intervention, pp. 581–8, 2015.
  • A. Bosch, X. Munoz, and R. Marti, “Which is the best way to organize/classify images by content?” Image. Vis. Comput., Vol. 25, no. 6, pp. 778–91, Jun. 2007. doi: 10.1016/j.imavis.2006.07.015
  • G. Csurka, C. R. Dance, L. Fan, J. Willamowski, and C. Bray, “Visual categorization with bags of keypoints,” Workshop on Statistical Learn. Comput. Vis., in ECCV, Prague, Vol. 1, pp. 1–2, 2004.
  • J. Sivic, and A. Zisserman, “Video Google: a text retrieval approach to object matching in videos,” in Proceedings of IEEE International Conference on Computer Vision, Vol. 2, pp. 1470–7, 2003.
  • D. Romo, P. Garcez, and E. Romero, “A discriminant multi-scale histopathology descriptor using dictionary learning,” Proc. SPIE, Vol. 9041, pp. 90410Q–6, 2014. doi: 10.1117/12.2043935
  • J. Schmidhuber, “Deep learning in neural networks: an overview,” Neural Netw., Vol. 61, pp. 85–117, 2015. doi: 10.1016/j.neunet.2014.09.003
  • H. Greenspan, B. van Ginneken, and R. M. Summers, “Deep learning in medical imaging: overview and future promise of an exciting new technique,” IEEE Trans. Med. Imaging, Vol. 35, pp. 1153–9, 2016. doi: 10.1109/TMI.2016.2553401
  • A. Janowczyk, and A. Madabhushi, “Deep learning for digital pathology image analysis: a comprehensive tutorial with selected use cases,” J. Pathol. Inform, Vol. 7, p. 29, 2016. doi: 10.4103/2153-3539.186902
  • J. Gua, et al., “Recent advances in convolutional neural networks,” Pattern Recogn., Vol. 77, pp. 354–77, 2018. doi: 10.1016/j.patcog.2017.10.013
  • H. Chang, L. Loss, and B. Parvin. “Nuclear segmentation in H&E sections via multi- reference graph cut (MRGC),” in Proc. of the Sixth IEEE Int. Conf. on Symposium on Biomedical Imaging (ISBI’2012), IEEE, New York, 2012.
  • R. M. Haralick, et al., “Textural features for image classification,” IEEE Trans. Syst. Man Cybernet., Vol. 6, pp. 610–21, 1973. doi: 10.1109/TSMC.1973.4309314
  • M. M. Galloway, “Texture analysis using gray level run lengths,” Comput. Graphics Image Process, Vol. 4, no. 2, pp. 172–9, 1975. doi: 10.1016/S0146-664X(75)80008-6
  • H. Irshad, “Automated mitosis detection in histopathology using morphological and multi-channel statistics features,” J. Pathol. Inf, Vol. 4, no. 1, pp. 10–5, 2013. doi: 10.4103/2153-3539.112695
  • J. Shawe-Taylor, and S. Sun, “A review of optimization methodologies in support vector machines,” J. Neurocomputing. Vol. 74, pp. 3609–18, 2011. doi: 10.1016/j.neucom.2011.06.026
  • F. F. Li, and P. Perona. “A bayesian hierarchical model for learning natural scene categories,” in CVPR '05: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) – Volume 2, Washington, DC, USA, IEEE Computer Society, pp. 524–531, 2005.
  • J. Shawe-Taylor, and N. Cristianini. Kernel Methods for Pattern Analysis. New York, NY, USA: Cambridge University Press, 2004.
  • K. Simonyan, and A. Zisserman. “Very Deep Convolutional Networks for Large-Scale Image Recognition”. arXiv [cs.CV]; 2014.
  • A. Krizhevsky, I. Sutskever, G.E. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks,” in Advances in Neural Information Processing Systems, F. Pereira, Ed. Red Hook, NY: Curran Associates, Inc., 2012, pp. 1097–105.
  • B. Misselwitz, et al., “Enhanced CellClassifier: a multi-class classification tool for microscopy images,” BMC Bioinform, Vol. 11, pp. 11–30, 2010. doi: 10.1186/1471-2105-11-30
  • J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are features in deep neural networks?,” Adv. Neural. Inf. Process. Syst., Vol. 2, pp. 3320–8, 2014.
  • C. Malon, and E. Cosatto, “Classification of mitotic figures with convolutional neural networks and seeded blob features,” J. Pathol. Inf, Vol. 4, no. 1, pp. 9–13, 2013. doi: 10.4103/2153-3539.112694
  • D. C. Ciresan, et al., “Mitosis detection in breast cancer histology images with deep neural networks,” in Medical Image Computing and Computer-Assisted Intervention (MICCAI), Springer, Nagoya, Japan, 2013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.