402
Views
10
CrossRef citations to date
0
Altmetric
Articles

Adaptive Safe Experimentation Dynamics for Data-Driven Neuroendocrine-PID Control of MIMO Systems

ORCID Icon, &

REFERENCES

  • Z.-S. Hou, and Z. Wang, “From model-based control to data-driven control: Survey, classification and perspective,” Inf. Sci., Vol. 235, pp. 3–35, Jun. 2013. doi: 10.1016/j.ins.2012.07.014
  • R.-E. Precup, M.-B. Radac, R.-C. Roman, and E. M. Petriu, “Model-free sliding mode control of nonlinear systems: Algorithms and experiments,” Inf. Sci., Vol. 381, pp. 176–192, Mar. 2017. doi: 10.1016/j.ins.2016.11.026
  • X. Jian-Xin, and H. Zhong-Sheng, “Notes on data-driven system approaches,” Acta Autom. Sin., Vol. 35, no. 6, pp. 668–675, Jun. 2019.
  • P. Goodall, R. Sharpe, and A. West, “A data-driven simulation to support remanufacturing operations,” Comput. Ind., Vol. 105, pp. 48–60, Feb. 2019. doi: 10.1016/j.compind.2018.11.001
  • T. Yamamoto, K. Takao, and T. Yamada, “Design of a data-driven PID controller,” IEEE Trans. Control Syst. Technol., Vol. 17, no. 1, pp. 29–39, Jan. 2009. doi: 10.1109/TCST.2008.921808
  • S. Wakitani, K. Nishida, M. Nakamoto, and T. Yamamoto, “Design of a data-driven PID controller using operating data,” IFAC Proc. Vol., Vol. 46, no. 11, pp. 587–592, Jul. 2013. doi: 10.3182/20130703-3-FR-4038.00077
  • A. N. K. Nasir, R. M. T. Raja Ismail, and M. A. Ahmad, “Performance comparison between sliding mode control (SMC) and PD-PID controllers for a nonlinear inverted pendulum system,” in International Conference Control, Automation, Robotics and Vision, WASET, Paris, 2010, pp. 122–127.
  • P. Gil, C. Lucena, A. Cardoso, and L. B. Palma, “Gain tuning of fuzzy PID controllers for MIMO systems: A performance-driven Approach,” IEEE Trans. Fuzzy Syst., Vol. 23, no. 4, pp. 757–768, Aug. 2015. doi: 10.1109/TFUZZ.2014.2327990
  • A. A. El-Samahy, and M. A. Shamseldin, “Brushless dc motor tracking control using self-tuning fuzzy PID control and model reference adaptive control,” Ain Shams Eng. J., Vol. 9, no. 3, pp. 341–352, Sep. 2015. doi: 10.1016/j.asej.2016.02.004
  • A. Ates, B. B. Alagoz, C. Yeroğlu, and H. Alisoy, “Sigmoid based PID controller implementation for rotor control,” in 2015 IEEE European Control Conference (ECC), Linz, Austria, 2015, pp. 458–463.
  • M. A. Ahmad, and R. M. T. R. Ismail, “A data-driven sigmoid-based PI controller for buck-converter powered dc motor,” in 2017 IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE), Langkawi, Malaysia, 2017, pp. 81–86.
  • X. Li, Y. Wang, N. Li, M. Han, Y. Tang, and F. Liu, “Optimal fractional order PID controller design for automatic voltage regulator system based on reference model using particle swarm optimization,” Int. J. Mach. Learn. Cybern., Vol. 8, no. 5, pp. 1595–1605, Oct. 2017. doi: 10.1007/s13042-016-0530-2
  • P. Shah, and S. Agashe, “Review of fractional PID controller,” Mechatronics, Vol. 38, pp. 29–41, Sep. 2016. doi: 10.1016/j.mechatronics.2016.06.005
  • A. Zribi, M. Chtourou, and M. Djemel, “A new PID neural network controller design for nonlinear processes,” J. Circuits Syst. Comput., Vol. 27, no. 4, p. 1850065, Aug. 2017. doi: 10.1142/S0218126618500652
  • A. L. Saleh, B. A. Obaid, and A. A. Obed, “Motion control of linear induction motor based on optimal recurrent wavelet neural network-PID controller,” Int. J. Eng. Technol., Vol. 7, no. 4, pp. 2028–2034, 2018. doi: 10.14419/ijet.v7i4.13041
  • A. Asgharnia, R. Shahnazi, and A. Jamali, “Performance and robustness of optimal fractional fuzzy PID controllers for pitch control of a wind turbine using chaotic optimization algorithms,” ISA Trans., Vol. 79, pp. 27–44, Aug. 2018. doi: 10.1016/j.isatra.2018.04.016
  • P. Mishra, V. Kumar, and K. Rana, “A fractional order fuzzy PID controller for binary distillation column control,” Expert. Syst. Appl., Vol. 42, no. 22, pp. 8533–8549, Dec. 2015. doi: 10.1016/j.eswa.2015.07.008
  • A. T. Azar, and F. E. Serrano, “Fractional order sliding mode PID controller/observer for continuous nonlinear switched systems with PSO parameter tuning,” in International Conference on Advanced Machine Learning Technologies and Applications, Egypt, 2018, pp. 13–22.
  • Y. Weng, and X. Gao, “Data-driven sliding mode control of unknown MIMO nonlinear discrete-time systems with moving PID sliding surface,” J. Franklin Inst., Vol. 354, no. 15, pp. 6463–6502, Oct. 2017. doi: 10.1016/j.jfranklin.2017.07.022
  • A. Waugh, and A. Grant, Anatomy and Physiology in Health and Illness, 10th ed. London: Elsevier Health Sciences, 2014, pp. 212–215.
  • X. Liang, Y. Ding, L. Ren, K. Hao, and Y. Jin, “Data-driven cooperative intelligent controller based on the endocrine regulation mechanism,” IEEE Trans. Control Syst. Technol., Vol. 22, no. 1, pp. 94–101, Jan. 2014. doi: 10.1109/TCST.2013.2245417
  • Y. Ding, N. Xu, L. Ren, and K. Hao, “Data-driven neuroendocrine ultrashort feedback-based cooperative control system,” IEEE Trans. Control Sys. Technol., Vol. 23, no. 3, pp. 1205–1212, May 2015. doi: 10.1109/TCST.2014.2359386
  • Y. Ding, L. Chen, and K. Hao, “Human body based intelligent cooperative decoupling controllers,” in Bio-inspired Collaborative Intelligent Control and Optimization. Singapore: Springer, Nov. 2017, pp. 25–80.
  • M. R. Ghazali, M. A. Ahmad, M. F. M. Jusof, and R. M. T. R. Ismail, “A data-driven neuroendocrine-PID controller for underactuated systems based on safe experimentation dynamics,” in IEEE 14th International Colloquium on Signal Processing & Its Applications (CSPA), Penang Malaysia, 2018, pp. 61–66.
  • J. R. Marden, S. D. Ruben, and L. Y. Pao, “A model-free approach to wind farm control using game theoretic methods,” IEEE Trans. Control Syst. Technol., Vol. 21, no. 4, pp. 1207–1214, May 2013. doi: 10.1109/TCST.2013.2257780
  • N. S. A. Shukor, M. A. Ahmad, and M. Z. M. Tumari, “Data-driven PID tuning based on safe experimentation dynamics for control of liquid slosh,” in 2017 IEEE 8th Control and System Graduate Research Colloquium (ICSGRC), Shah Alam, Malaysia, 2017, pp. 62–66.
  • M.-S. Park, D. Chwa, and M. Eom, “Adaptive sliding-mode antisway control of uncertain overhead cranes with high-speed hoisting motion,” IEEE Trans. Fuzzy Syst., Vol. 22, no. 5, pp. 1262–1271, Oct. 2014. doi: 10.1109/TFUZZ.2013.2290139
  • B. Parvat, and B. Patre, “Design of SMC with decoupler for multi-variable coupled tank process,” in 2014 Annual IEEE India Conference (INDICON), Pune, India, 2014, pp. 1–5.
  • S. Kangwanrat, V. Tipsuwannaporn, and A. Numsomran, “Design of PI controller using MRAC techniques for coupled-tanks process,” in IEEE International Conference on Control Automation and Systems (ICCAS), South Korea, 2010, pp. 485–490.
  • E. Hernandez-Marquez, R. Silva-Ortigoza, J. R. Garcia-Sanchez, M. Marcelino-Aranda, and G. Saldana-Gonzalez, “A DC/DC buck-boost converter-inverter-DC motor system: Sensorless passivity-based control,” IEEE. Access., Vol. 6, pp. 31486–31492, Jun. 2018. doi: 10.1109/ACCESS.2018.2846614
  • V. Garcia-Rodrguez, R. Silva-Ortigoza, E. Hernandez-Marquez, J. Garcia-Sanchez, and H. Taud, “DC/DC boost converter-inverter as driver for a dc motor: Modeling and experimental verification,” Energies, Vol. 11, no. 8, p. 2044, Aug. 2018. doi: 10.3390/en11082044

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.