306
Views
19
CrossRef citations to date
0
Altmetric
Articles

Wideband Rectangular Double-Ring Nanoribbon Graphene-Based Antenna for Terahertz Communications

, ORCID Icon &

References

  • I. Malhotra, K. R. Jha, and G. Singh, “Terahertz antenna technology for imaging applications: A technical review,” Int. J. Microwave Wireless Technol., Vol. 10, no. 3, pp. 271–90, 2018. doi: 10.1017/S175907871800003X
  • J. Federici, and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys., Vol. 107, no. 11, pp. 6, 2010. doi: 10.1063/1.3386413
  • G. Varshney, A. Verma, V. S. Pandey, R. S. Yaduvanshi, and R. Bala, “A proximity coupled wideband graphene antenna with the generation of higher order TM modes for THz applications,” Opt. Mater., Vol. 85, pp. 456–63, 2018. doi: 10.1016/j.optmat.2018.09.015
  • C. Lin, and G. Y. L. Li, “Terahertz communications: An array-of-subarrays solution,” IEEE Commun. Mag., Vol. 54, no. 12, pp. 124–31, 2016. doi: 10.1109/MCOM.2016.1600306CM
  • M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B, Vol. 76, no. 12, pp. 125408, 2007. doi: 10.1103/PhysRevB.76.125408
  • S. Abadal, I. Llatser, A. Mestres, H. Lee, E. Alarcón, and A. Cabellos-Aparicio, “Time-domain analysis of graphene-based miniaturized antennas for ultra-short-range impulse radio communications,” IEEE Trans. Commun., Vol. 63, no. 4, pp. 1470–82, 2015. doi: 10.1109/TCOMM.2015.2406691
  • A. Kumar, L. S. Peh, P. Kundu, and N. K. Jha, “Toward ideal on-chip communication using express virtual channels,” IEEE Micro, Vol. 28, no. 1, pp. 80–90, 2008. doi: 10.1109/MM.2008.18
  • N. R. Rodrigues, R. de Oliveira, and V. Dmitriev, “Smart terahertz graphene antenna: Operation as an omnidirectional dipole and as a directive antenna,” IEEE Antennas Propag. Mag., Vol. 60, pp. 26–40, 2018. doi: 10.1109/MAP.2018.2859169
  • Y. Dong, P. Liu, D. Yu, G. Li, and F. Tao, “Dual-band reconfigurable terahertz patch antenna with graphene-stack-based backing cavity,” IEEE Antennas Wirel. Propag. Lett., Vol. 15, pp. 1541–4, 2016. doi: 10.1109/LAWP.2016.2533018
  • J. S. Gomez-Diaz, C. Moldovan, S. Capdevila, J. Romeu, L. S. Bernard, A. Magrez, A. M. Ionescu, and J. Perruisseau-Carrier, “Self-biased reconfigurable graphene stacks for terahertz plasmonics,” Nat. Commun., Vol. 6, pp. 6334, 2015. doi: 10.1038/ncomms7334
  • Z. Xu, X. Dong, and J. Bornemann, “Design of a reconfigurable MIMO system for THz communications based on graphene antennas,” IEEE Trans. Terahertz Sci. Technol., Vol. 4, no. 5, pp. 609–17, 2014. doi: 10.1109/TTHZ.2014.2331496
  • W. Fuscaldo, S. Tofani, D. C. Zografopoulos, P. Baccarelli, P. Burghignoli, R. Beccherelli, and A. Galli, “Systematic design of THz leaky-wave antennas based on homogenized metasurfaces,” IEEE Trans. Antennas Propag., Vol. 66, no. 3, pp. 1169–78, 2018. doi: 10.1109/TAP.2018.2794393
  • M. Faridani, and M. C. Yagoub, “12-Element wideband microstrip array antenna for high data rate terahertz communications,” Optik. (Stuttg), Vol. 171, pp. 886–90, 2018. doi: 10.1016/j.ijleo.2018.06.136
  • H. Giddens, L. Yang, J. Tian, and Y. Hao, “Mid-infrared reflect-array antenna with beam switching enabled by continuous graphene layer,” IEEE Photon. Technol. Lett., Vol. 30, no. 8, pp. 748–51, 2018. doi: 10.1109/LPT.2018.2814684
  • F. H. L. Koppens, D. E. Chang, and F. J. Garcia de Abajo, “Graphene plasmonics: A platform for strong light-matter interactions,” Nano Lett. Am. Chem. Soc., Vol. 11, pp. 3370–7, 2011. doi: 10.1021/nl201771h
  • V. S. Yadav, S. K. Ghosh, S. Bhattacharyya, and S. Das, “Graphene based metasurface for tunable broadband terahertz cross polarization converter over wide angle of incidence,” Appl. Opt., Vol. 57, no. 29, pp. 8720–6, October 2018. doi: 10.1364/AO.57.008720
  • S. Luo, B. Li, A. Yu, J. Gao, X. Wang, and D. Zuo, “Broadband tunable terahertz polarization converter based on graphene metamaterial,” Opt. Commun., Vol. 413, pp. 184–9, 2018. doi: 10.1016/j.optcom.2017.12.036
  • J. Zhu, S. Li, L. Deng, C. Zhang, Y. Yang, and H. Zhu, “Broadband tunable terahertz polarization converter based on a sinusoidally-slotted graphene metamaterial,” Opt. Mater. Exp., Vol. 8, pp. 1164–73, 2018. doi: 10.1364/OME.8.001164
  • S. K. Ghosh, V. S. Yadav, S. Das, and S. Bhattacharyya. “Tunable graphene based metasurface for polarization-independent broadband absorption in lower mid infrared (MIR) range,” IEEE Trans. Electromagn. Compat, pp. 1–9, 2019.
  • A. Khavasi, “Design of ultra-broadband graphene absorber using circuit theory,” J. Optic. Soc. Am. B, Vol. 32, pp. 1941–6, 2015. doi: 10.1364/JOSAB.32.001941
  • A. Andryieuski, and A. V. Lavrinenko, “Graphene metamaterials based tunable terahertz absorber: Effective surface conductivity approach,” Opt. Exp., Vol. 21, pp. 9144–55, 2013. doi: 10.1364/OE.21.009144
  • S. A. Naghdehforushha, and G. Moradi, “Plasmonic patch antenna based on graphene with tunable terahertz band communications,” Optik – Int. J. Light Electron. Optics, Vol. 158, pp. 617–22, 2018. doi: 10.1016/j.ijleo.2017.12.088
  • G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys., Vol. 103, no. 6, pp. 064302, 2008. doi: 10.1063/1.2891452
  • F. Liang, Z. Z. Yang, Y. X. Xie, H. Li, D. Zhao, and B. Z. Wang, “Beam-scanning microstrip Quasi-Yagi–Uda antenna based on hybrid metal-graphene materials,” IEEE Photon. Technol. Lett., Vol. 30, no. 12, pp. 1127–30, 2018. doi: 10.1109/LPT.2018.2835840
  • S. A. Amanatiadis, T. D. Karamanos, and N. V. Kantartzis, “Radiation efficiency enhancement of graphene THz antennas utilizing metamaterial substrates,” IEEE Antennas Wirel. Propag. Lett., Vol. 16, pp. 2054–7, 2017. doi: 10.1109/LAWP.2017.2695521
  • I. Llatser, C. Kremers, D. N. Chigrin, J. M. Jornet, M. C. Lemme, A. Cabellos-Aparicio, and E. Alarcon, “Radiation characteristics of tunable graphennas in the terahertz band,” Radio Eng., Vol. 21, no. 4, pp. 946–53, 2012.
  • N. Rouhi, S. Capdevila, D. Jain, K. Zand, Y. Y. Wang, E. Brown, L. Jofre, and P. Burke, “Terahertz graphene optics,” Nano Res., Vol. 5, no. 10, pp. 667–78, 2012. doi: 10.1007/s12274-012-0251-0
  • A. A. Dubinov, V. Y. Aleshkin, V. Mitin, T. Otsuji, and V. Ryzhii, “Terahertz surface plasmons in optically pumped graphene structures,” J. Phys.: Condens. Matter, Vol. 23, no. 14, pp. 145302, 2011.
  • A. Vakil, and N. Engheta, “Transformation optics using graphene,” Science, Vol. 332, no. 6035, pp. 1291–4, 2011. doi: 10.1126/science.1202691
  • S. A. Naghdehforushha, and G. Moradi, “Design of plasmonic rectangular ribbon antenna based on graphene for terahertz band communication,” IET Microw. Antennas Propag., Vol. 12, no. 5, pp. 804–7, 2017. doi: 10.1049/iet-map.2017.0678
  • S. Anand, D. S. Kumar, R. J. Wu, and M. Chavali, “Graphene nanoribbon based terahertz antenna on polyimide substrate,” Optik – Int. J. Light Electron. Optics, Vol. 125, no. 19, pp. 5546–9, 2014. doi: 10.1016/j.ijleo.2014.06.085
  • R. Goyal, and D. K. Vishwakarma, “Design of a graphene-based patch antenna on glass substrate for high-speed terahertz communications,” Microw. Opt. Technol. Lett., Vol. 60, no. 7, pp. 1594–1600, 2018. doi: 10.1002/mop.31216

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.