142
Views
2
CrossRef citations to date
0
Altmetric
Articles

Alternative Approaches to Program Memristor and Reduce the Effect of Random Telegraphic Noise

, &

References

  • W. Yi, et al., “Quantized conductance coincides with state instability and excess noise in tantalum oxide memristors,” Nat. Commun, Vol. 7, no. 1, pp. 11142, Dec. 2016. doi: 10.1038/ncomms11142
  • B. J. Choi, et al., “High-speed and low-energy nitride memristors,” Adv. Funct. Mater, Vol. 26, no. 29, pp. 5290–5296, Aug. 2016. doi: 10.1002/adfm.201600680
  • H. S. P. Wong, et al., “Metal–oxide RRAM,” Proc. IEEE, Vol. 100, no. 6, pp. 1951–1970, Jun. 2012. doi: 10.1109/JPROC.2012.2190369
  • S. H. Jo, and W. Lu, “CMOS compatible nanoscale nonvolatile resistance switching memory,” Nano Lett., Vol. 8, no. 2, pp. 392–397, Feb. 2008. doi: 10.1021/nl073225h
  • S. Duan, X. Hu, L. Wang, C. Li, and P. Mazumder, “Memristor-based RRAM with applications,” Sci. China Inf. Sci, Vol. 55, no. 6, pp. 1446–1460, Jun. 2012. doi: 10.1007/s11432-012-4572-0
  • K. H. Kim, S. Gaba, D. Wheeler, J. M. Cruz-Albrecht, T. Hussain, N. Srinivasa, and W. Lu, “A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications,” Nano Lett., Vol. 12, no. 1, pp. 389–395, Jan. 2012. doi: 10.1021/nl203687n
  • S. Kundu, et al., “Lead-free epitaxial ferroelectric material integration on semiconducting (100) Nb-doped SrTiO3 for low-power non-volatile memory and efficient ultraviolet ray detection,” Sci. Rep, Vol. 5, no. 1, pp. 12415, Dec. 2015. doi: 10.1038/srep12415
  • S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu, “Nanoscale memristor device as Synapse in neuromorphic systems,” Nano Lett., Vol. 10, no. 4, pp. 1297–1301, Apr. 2010. doi: 10.1021/nl904092h
  • Q. Xia, et al., “Memristor−CMOS hybrid integrated circuits for reconfigurable logic,” Nano Lett., Vol. 9, no. 10, pp. 3640–3645, Oct. 2009. doi: 10.1021/nl901874j
  • J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart, and R. S. Williams, “‘Memristive’ switches enable ‘stateful’ logic operations via material implication,” Nature, Vol. 464, no. 7290, pp. 873–876, Apr. 2010. doi: 10.1038/nature08940
  • S. H. Jo, K. H. Kim, and W. Lu, “High-density crossbar arrays based on a Si memristive system,” Nano Lett., Vol. 9, no. 2, pp. 870–874, Feb. 2009. doi: 10.1021/nl8037689
  • D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The missing memristor found,” Nature, Vol. 453, no. 7191, pp. 80–83, May 2008. doi: 10.1038/nature06932
  • J. J. Yang, et al., “High switching endurance in TaOx memristive devices,” Appl. Phys. Lett, Vol. 97, no. 23, pp. 232102, Dec. 2010. doi: 10.1063/1.3524521
  • G. A. Brown, P. M. Zeitzoff, G. Bersuker, and H. R. Huff, “Scaling CMOS,” Mater. Today, Vol. 7, no. 1, pp. 20–25, 2004.
  • N. Z. Haron, and S. Hamdioui, “Why is CMOS scaling coming to an END?” Proc. - 2008 3rd Int. Des. Test Work. IDT, Delft, 2008, pp. 98–103.
  • B. P. Lathi. Modern Digital and Analog Communication Systems. New York: Oxford University Press, 1998.
  • A. E. El-Mahdy, and N. M. Namazi, “Classification of multiple M-ary frequency-shift keying signals over a Rayleigh fading channel,” IEEE Trans. Commun, Vol. 50, no. 6, pp. 967–974, Jun. 2002. doi: 10.1109/TCOMM.2002.1010616
  • Y. V. Pershin, and M. Di Ventra, “Memory effects in complex materials and nanoscale systems,” Adv. Phys, Vol. 60, no. 2, pp. 145–227, Apr. 2011. doi: 10.1080/00018732.2010.544961
  • R. Wiley, “Recovery of bandlimited signals from unequally spaced samples,” IEEE Trans. Commun, Vol. 26, no. 1, pp. 135–137, Jan. 1978. doi: 10.1109/TCOM.1978.1093962
  • M. Ghovanloo, and K. Najafi, “A wideband frequency-shift keying wireless link for inductively powered biomedical implants,” IEEE Trans. Circuits Syst. I Regul. Pap, Vol. 51, no. 12, pp. 2374–2383, Dec. 2004. doi: 10.1109/TCSI.2004.838144
  • P. Huang, et al., “RTN based oxygen vacancy probing method for Ox-RRAM reliability characterization and its application in tail bits,” in 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, 2017, pp. 21.4.1–21.4.4.
  • S. Choi, Y. Yang, and W. Lu, “Random telegraph noise and resistance switching analysis of oxide based resistive memory,” Nanoscale., Vol. 6, no. 1, pp. 400–404, Dec. 2014. doi: 10.1039/C3NR05016E
  • S. Brivio, J. Frascaroli, E. Covi, and S. Spiga, “Stimulated ionic telegraph noise in filamentary memristive devices,” Sci. Rep, Vol. 9, no. 1, pp. 6310, Dec. 2019. doi: 10.1038/s41598-019-41497-3
  • F. M. Puglisi, P. Pavan, A. Padovani, and L. Larcher, “A study on HfO2RRAM in HRS based on I-V and RTN analysis,” Solid. State. Electron, Vol. 102, pp. 69–75, 2014. doi: 10.1016/j.sse.2014.06.001
  • F. M. Puglisi, P. Pavan, and L. Larcher. “Random telegraph noise in HfOx resistive random access memory: From physics to compact modeling,” in 2016 IEEE International Reliability Physics Symposium (IRPS), Pasadena, CA, 2016, p. MY-8-1-MY-8-5.
  • S. Ambrogio, S. Balatti, V. McCaffrey, D. Wang, and D. Ielmini. “Impact of low-frequency noise on read distributions of resistive switching memory (RRAM),” in 2014 IEEE International Electron Devices Meeting, San Francisco, CA, 2014, pp. 14.4.1-14.4.4.
  • P. K. R. Boppidi, P. M. P. Raj, S. Challagulla, S. R. Gollu, S. Roy, S. Banerjee, and S. Kundu, “Unveiling the dual role of chemically synthesized copper doped zinc oxide for resistive switching applications,” J. Appl. Phys, Vol. 124, no. 21, pp. 214901, Dec. 2018. doi: 10.1063/1.5052619
  • B. Suresh, P. K. R. Boppidi, B. V. V. S. P. Rao, S. Banerjee, and S. Kundu, “Realizing STDP learning rule in Pt/Cu:ZnO/Nb:STO memristors for implementing single spike based denoising autoencoder,” J. Micromechanics Microengineering, May 2019. doi:10.1088/1361-6439/ab235f.
  • H. Y. Lee, et al., “Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM,” in 2008 IEEE International Electron Devices Meeting, San Francisco, CA, 2008, pp. 1–4.
  • S. S. Soliman, and M. D. Srinath, Continuous and Discrete Signals and Systems, 1st ed. Englewood Cliffs, NJ: Prentice Hall, 1990, p. 523.
  • P. M. P. Raj, A. Subramaniam, S. Priya, S. Banerjee, and S. Kundu, “Programming of memristive artificial synaptic crossbar network using PWM techniques,” J. Circuits, Syst. Comput., Vol. 28, no. 12, Nov. 2019. doi:10.1142/S0218126619502013.
  • P. R. Gray, P. J. Hurst, S. H. Lewis, and R. G. Meyer, Analysis and Design of Analog Integrated Circuits, 5th ed. New York: John Wiley & Sons, Ltd, 2009.
  • A. S. Sedra, and K. C. Smith. Microelectronic Circuits. 7th ed. New York: Oxford University Press, 2017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.