220
Views
2
CrossRef citations to date
0
Altmetric
Articles

A Novel Features Selection Approach with Common Spatial Pattern for EEG Based Brain–Computer Interface Implementation

, ORCID Icon, &

References

  • S. C. Kleih, T. Kaufmann, C. Zickler, S. Halder, F. Leotta, F. Cincotti, F. Aloise, et al., “Out of the frying pan into the fire – the P300-based BCI faces real-world challenges,” Prog. Brain Res., Elsevier, Vol. 194, pp. 27–46, 2011. doi: 10.1016/B978-0-444-53815-4.00019-4
  • D. J. McFarland, W. A. Sarnacki, and J. R. Wolpaw, “Electroencephalographic (EEG) control of three-dimensional movement,” J. Neural Eng., Vol. 7, no. 3, pp. 036007, 2010. doi: 10.1088/1741-2560/7/3/036007
  • F. Cincotti, D. Mattia, F. Aloise, S. Bufalari, G. Schalk, G. Oriolo, A. Cherubini, M. G. Marciani, and F. Babiloni, “Non-invasive brain–computer interface system: towards its application as assistive technology,” Brain Res. Bull., Vol. 75, no. 6, pp. 796–803, 2008. doi: 10.1016/j.brainresbull.2008.01.007
  • S. Janjarasjitt, “Epileptic seizure classifications of single-channel scalp EEG data using wavelet-based features and SVM,” Med. Biol. Eng. Comput., Vol. 55, no. 10, pp. 1743–61, 2017. doi: 10.1007/s11517-017-1613-2
  • W. Mumtaz, S. S. A. Ali, M. A. M. Yasin, and A. S. Malik, “A machine learning framework involving EEG-based functional connectivity to diagnose major depressive disorder (MDD),” Med. Biol. Eng. Comput., Vol. 56, no. 2, pp. 233–46, 2018. doi: 10.1007/s11517-017-1685-z
  • K. Samiee, P. Kovács, and M. Gabbouj, “Epileptic seizure detection in long-term EEG records using sparse rational decomposition and local Gabor binary patterns feature extraction,” Knowl. Based. Syst., Vol. 118, pp. 228–40, 2017. doi: 10.1016/j.knosys.2016.11.023
  • F. Akram, M. K. Metwally, H.-S. Han, H.-J. Jeon, and T.-S. Kim, “A novel P300-based BCI system for words typing,” in 2013 International Winter Workshop on Brain-Computer Interface (BCI), IEEE, 2013, pp. 24–5.
  • D. La Rocca, P. Campisi, and J. Solé-Casals, “EEG based user recognition using BUMP modelling,” in 2013 International Conference of the BIOSIG special interest Group (BIOSIG), IEEE, 2013, pp. 1–12.
  • B. Rebsamen, E. Burdet, C. Guan, H. Zhang, C. L. Teo, Q. Zeng, C. Laugier, and M. H. Ang Jr., “Controlling a wheelchair indoors using thought,” IEEE Intell. Syst., Vol. 22, no. 2, pp. 18–24, 2007. doi: 10.1109/MIS.2007.26
  • N. Birbaumer, “Brain-computer-interface research: Coming of age,” Clin. Neurophysiol., Vol. 117, no. 3, pp. 479–83, 2006. doi: 10.1016/j.clinph.2005.11.002
  • S. Kumar, K. Mamun, and A. Sharma, “CSP-TSM: Optimizing the performance of Riemannian tangent space mapping using common spatial pattern for MI-BCI,” Comput. Biol. Med., Vol. 91, pp. 231–42, 2017. doi: 10.1016/j.compbiomed.2017.10.025
  • S. Kumar, A. Sharma, K. Mamun, and T. Tsunoda, “A deep learning approach for motor imagery EEG signal classification,” in 2016 3rd Asia-Pacific World Congress on Computer Science and Engineering (APWC on CSE), IEEE, 2016, pp. 34–9.
  • S. Kumar, A. Sharma, and T. Tsunoda, “An improved discriminative filter bank selection approach for motor imagery EEG signal classification using mutual information,” BMC Bioinformatics, Vol. 18, no. 16, pp. 545, 2017. doi: 10.1186/s12859-017-1964-6
  • M. Miao, A. Wang, and F. Liu, “A spatial-frequency-temporal optimized feature sparse representation-based classification method for motor imagery eeg pattern recognition,” Med. Biol. Eng. Comput., Vol. 55, no. 9, pp. 1589–1603, 2017. doi: 10.1007/s11517-017-1622-1
  • A. Yuksel, T. Olmez, and L. Bianchi, “A neural network-based optimal spatial filter design method for motor imagery classification,” PloS One, Vol. 10, no. 5, pp. e0125039, 2015. doi: 10.1371/journal.pone.0125039
  • J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T. M. Vaughan, “Brain-computer interfaces for communication and control,” Clin. Neurophysiol., Vol. 113, pp. 767–91, 2002. doi: 10.1016/S1388-2457(02)00057-3
  • E. Niredermeyer, and F. Lopes da Silva, “Electroencephalography: BasicPrinciples”, in Clinical Applications and Related Fields, 5th ed., Baltimore, MD, USA: Lippincott Williams Wilkins, 2005, pp. 1–1256.
  • K. Gorur, M. R. Bozkurt, M. S. Bascil, and F. Temurtas, “Glossokinetic potential based tongue–machine interface for 1-D extraction,” Australas. Phys. Eng. Sci. Med., Vol. 41, no. 2, pp. 379–91, 2018. doi: 10.1007/s13246-018-0635-x
  • G. Pfurtscheller, and F. Lopes da Silva, “Event-related EEG/MEG synchronization and desynchronization: basic principles,” Clin. Neurophysiol., Vol. 110, no. 11, pp. 1842–57, 1999. doi: 10.1016/S1388-2457(99)00141-8
  • A. Barachant, S. Bonnet, M. Congedo, and C. Jutten, “Classification of covariance matrices using a Riemannian based kernel for BCI applications,” Neurocomputing, Vol. 112, pp. 172–78, 2013. doi: 10.1016/j.neucom.2012.12.039
  • H. Ramoser, J. Muller-Gerking, and G. Pfurtscheller, “Optimal spatial filtering of single trial EEG during imagined hand movement,” IEEE Trans. Rehabilitation Eng., Vol. 8, no. 4, pp. 441–46, 2000. doi: 10.1109/86.895946
  • M. S. Bascil, A. Y. Tesneli, and F. Temurtas, “Multi-channel EEG signal feature extraction and pattern recognition on horizontal mental imagination task of 1-D cursor movement for brain computer interface,” Australas. Phys. Eng. Sci. Med., Vol. 38, no. 2, pp. 229–39, 2015. doi: 10.1007/s13246-015-0345-6
  • M. S. Bascil, A. Y. Tesneli, and F. Temurtas, “Spectral feature extraction of EEG signals and pattern recognition during mental tasks of 2-D cursor movements for BCI using SVM and ANN,” Australas. Phys. Eng. Sci. Med., Vol. 39, no. 3, pp. 665–76, 2016. doi: 10.1007/s13246-016-0462-x
  • M. S. Bascil, “A new approach on HCI extracting conscious jaw movements based on EEG signals using machine learnings,” J. Med. Syst., Vol. 42, no. 9, pp. 169, 2018. doi: 10.1007/s10916-018-1027-1
  • B. Blankertz, R. Tomioka, S. Lemm, M. Kawanabe, and K. R. Muller, “Optimizing spatial filters for robust EEG single-trial analysis,” IEEE Signal Process Mag., Vol. 25, no. 1, pp. 41–56, 2008. doi: 10.1109/MSP.2008.4408441
  • B. Blankertz, M. Kawanabe, R. Tomioka, F. Hohlefeld, K. R. Muller, and V. V. Nikulin, “Invariant common spatial patterns: Alleviating non stationarities in brain-computer interfacing,” Adv. Neural. Inf. Process. Syst., Vol. 20, pp. 113–20, 2008.
  • G. Dornhege, B. Blankertz, M. Krauledat, F. Losch, G. Curio, and K. R. Muller, “Optimizing spatio-temporal filters for improving brain-computer interfacing,” Adv. Neural. Inf. Process. Syst., J. Platt, Ed., Vol. 18, pp. 315–22, (2006).
  • J. Muller-Gerking, G. Pfurtscheller, and H. Flyvbjerg, “Designing optimal spatial filters for single-trial EEG classification in a movement task,” Clin. Neurophysiol., Vol. 110, no. 5, pp. 787–98, 1999. doi: 10.1016/S1388-2457(98)00038-8
  • F. Lotte, and C. Guan, “Regularizing common spatial patterns to improve BCI designs: unified theory and new algorithms,” IEEE Trans. Biomed. Eng., Vol. 58, no. 2, pp. 355–62, 2011. doi: 10.1109/TBME.2010.2082539
  • F. Yger, F. Lotte, and M. Sugiyama, “Averaging covariance matrices for EEG signal classification based on the CSP: an empirical study,” in 23rd European Signal Processing Conference (EUSIPCO), 2015, pp. 2771–75.
  • Y. Zhang, G. Zhou, J. Jin, X. Wang, and A. Cichocki, “Optimizing spatial patterns with sparse filter bands for motor-imagery based brain-computer interface,” J. Neurosci. Methods, Vol. 255, pp. 85–91, 2015. doi: 10.1016/j.jneumeth.2015.08.004
  • H. Suk, and S.-W. Lee, “A novel Bayesian framework for discriminative feature extraction in brain-computer interfaces,” IEEE Transaction on Pattern Analysis and Machine Intelligence, Vol. 35, no. 2, pp. 286–99, 2013. doi: 10.1109/TPAMI.2012.69
  • K. K. Ang, Z. Y. Chin, H. Zhang, and C. Guan, “Filter bank common spatial pattern (FBCSP) in brain-computer interface,” in IEEE International Joint Conference on Neural Networks, 2008, pp. 2390–97.
  • H. Kang, Y. Nam, and S. Choi, “Composite common spatial pattern for subject-to-subject transfer,” IEEE Signal Process Lett., Vol. 16, no. 8, pp. 683–6, 2009. doi: 10.1109/LSP.2009.2022557
  • O. Falzon, K. P. Camilleri, and J. Muscat, “The analytic common spatial patterns method for EEG-based BCI data,” J. Neural Eng., Vol. 9, no. 4, pp. 045009, 2012. doi: 10.1088/1741-2560/9/4/045009
  • B. Blankertz, K. R. Muller, G. Curio, T. M. Vaughan, G. Schalk, J. R. Wolpaw, et al., “The BCI competition 2003: progress and perspectives in detection and discrimination of EEG single trials,” IEEE Trans. Biomed. Eng., Vol. 51, no. 6, pp. 1044–51, 2004. doi: 10.1109/TBME.2004.826692
  • B. Blankertz, K. R. Muller, D. J. Krusienski, G. Schalk, J. R. Wolpaw, A. Schlogl, et al., “The BCI competition III: Validating alternative approaches to actual BCI problems,” IEEE Trans. Neural Syst. Rehabil. Eng., Vol. 14, no. 2, pp. 153–59, 2006. doi: 10.1109/TNSRE.2006.875642
  • W. Samek, C. Vidaurre, K. R. Muller, and M. Kawanabe, “Stationary common spatial patterns for brain–computer interfacing,” J. Neural Eng., Vol. 9, no. 2, pp. 026013, 2012. doi: 10.1088/1741-2560/9/2/026013
  • D. Fattahi, B. Nasihatkon, and R. Boostani, “A general framework to estimate spatial and spatio-spectral filters for EEG signal classification,” Neurocomputing, Vol. 119, pp. 165–74, 2013. doi: 10.1016/j.neucom.2013.03.044
  • B. Reuderink, and M. Poel. “Robustness of the common spatial patterns algorithm in the BCI-pipeline,” 2008.
  • H. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos, “Regularized common spatial patterns with generic learning for EEG signal classification,” in 31st Annual International Conference of the IEEE EMBS, 2009, pp. 6599–602.
  • H. Wang, Q. Tang, and W. Zheng, “L1-norm-based common spatial patterns,” IEEE Trans. Biomed. Eng., Vol. 59, no. 3, pp. 653–62, 2012. doi: 10.1109/TBME.2011.2177523
  • R. P. N. Rao. Brain-Computer Interfacing: An Introduction. New York: Cambridge University Press, 2013.
  • Z. J. Koles, “The quantitative extraction and topographic mapping of the abnormal components in the clinical EEG,” Electroencephalogr. Clin. Neurophysiol., Vol. 79, no. 6, pp. 440–7, 1991. doi: 10.1016/0013-4694(91)90163-X
  • Y. Wang, S. Gao, and X. Gao, “Common spatial pattern method for channel selection in motor imagery based brain computer interface,” in IEEE Engineering in Medicine and Biology, 27th Annual Conference, 2005, pp. 5392–5.
  • Y. Xi, U. Hasson, P. J. Ramadge, and Z. J. Xiang, “Boosting with spatial regularization,” Adv. Neural. Inf. Process. Syst., Vol. 1, no. 3, pp. 2107–15, 2009.
  • D. Cai, X. He, Y. Hu, J. Han, and T. Huang, “Learning a spatially smooth subspace for face recognition,” in 2007 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2007.
  • T. M. Cover, and J. A. Thomas. Elements of information theory. 2nd edition. New York: Wiley, 2006, pp. 1–7.
  • M. Kantardzic. Data mining: concepts, models, methods, and algorithms. New Jersey: IEEE Press & John Wiley, November 2002.
  • M. R. Hasan, M. I. Ibrahimy, S. M. A. Motakabber, and S. Shahid, “Classification of multichannel EEG signal by linear discriminant analysis,” in 23rd International Conference on Systems Engineering, Advances in Intelligent Systems and Computing 1089, 2015, pp. 279–82.
  • L. Song, and J. Epps, “Classifying EEG for brain-computer interface: Learning optimal filters for dynamical system features,” Comput. Intell. Neurosci., Vol. 2007, pp. 1–11, 2007. doi: 10.1155/2007/57180
  • C. Neuper, G. R. Muller-Putz, R. Scherer, and G. Pfurtscheller, “Motor imagery and EEG-based control of spelling devices and neuroprostheses,” Prog. Brain Res., Vol. 159, pp. 393–409, 2006. doi: 10.1016/S0079-6123(06)59025-9
  • S. Wang, and C. J. James, “Extracting rhythmic brain activity for brain-computer interfacing through constrained independent component analysis,” Comput. Intell. Neurosci., Vol. 2007, pp. 1–9, 2007. doi: 10.1155/2007/41468

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.