83
Views
1
CrossRef citations to date
0
Altmetric
Articles

Analysis of Temperature-Dependent Crosstalk for Graphene Nanoribbon and Copper Interconnects

, &

References

  • A. H. Ajami, K. Banerjee, M. Pedram, and L. P. P. P. van Ginneken. “Analysis of non-uniform temperature-dependent interconnect performance in high performance ICs,” Design Automation Conference (DAC), Las Vegas, NV, Jun. 18–22, 2001, pp. 567–72.
  • A. H. Ajami, K. Banerjee, and M. Pedram, “Modeling and analysis of nonuniform substrate temperature effects on global ULSI interconnects,” IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., Vol. 24, no. 6, pp. 849–61, Jun. 2005. doi: 10.1109/TCAD.2005.847944
  • A. Labun, and K. Jagjitkumar, “Rapid detailed temperature estimation for highly coupled IC interconnect,” IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., Vol. 27, no. 10, pp. 1840–51, Oct. 2008. doi: 10.1109/TCAD.2008.2003275
  • L. Jiang, Y. Cheng, and J. Mao, “Analysis and optimization of thermal-driven global interconnects in nanometer design,” IEEE Trans. Compon. Packag Manuf. Technol., Vol. 1, no. 10, pp. 1564–72, Oct. 2011. doi: 10.1109/TCPMT.2011.2165212
  • A. G. Chiariello, A. Maffucci, and G. Miano, “A temperature-dependent circuit model for carbon-based on-chip global interconnects,” 12th IEEE Conference on Nanotechnology (IEEE-NANO), Vol. 1, no. 6, pp. 20–23, Aug. 2012.
  • A. Alizadeh, and R. Sarvari, “Temperature-dependent comparison between delay of CNT and copper interconnects,” IEEE Tran. Very Large Scale Integr. (VLSI) Syst., Vol. 1, no. 99, pp. 1, 30 Mar. 2015.
  • D. Das, and H. Rahaman. “Crosstalk and Gate oxide reliability analysis in graphene nanoribbon interconnects”, 2011 International Symposium Electronic System Design (ISED), Kochi, Dec. 19–21, 2011, pp. 182–7.
  • A. Naeemi, and J. D. Meindl, “Performance benchmarking for graphene nanoribbon, carbon nanotube, and Cu interconnects,” IITC, Burlingame, CA, USA, 183–185, 2008.
  • A. Naeemi, and J. D. Meindl, “Compact physics-based circuit models for graphene nanoribbon interconnects,” IEEE Trans. Electron Devices, Vol. 56, no. 9, pp. 1822–1833, Sep. 2009. doi: 10.1109/TED.2009.2026122
  • A. Naeemi, and J. D. Meindl, “Conductance modeling for graphene nanoribbon (GNR) interconnects,” IEEE Electron Device Lett., Vol. 28, no. 5, pp. 428–431, May 2007. doi: 10.1109/LED.2007.895452
  • C. Xu, H. Li, and K. Banerjee, “Modeling, analysis, and design of graphene nano-ribbon interconnects,” IEEE Trans. Electron Devices, Vol. 56, no. 8, pp. 1567–1578, Aug. 2009. doi: 10.1109/TED.2009.2024254
  • S. H. Nasiri, M. K. Moravvej-Farshi, and R. Faez, “Stability analysis in graphene nanoribbon interconnects,” IEEE Electron Device Lett., Vol. 31, no. 12, pp. 1458–1460, Dec. 2010. doi: 10.1109/LED.2010.2079312
  • S. Tanachutiwat, S. Liu, R. Geer, and W. Wang. “Monolithic graphene nanoribbon electronics for interconnect performance improvement”, Proceedings of the IEEE International Symposium on Circuits and Systems, May 24–27, 2009, pp.589–92.
  • S. Fratini, and F. Guinea, “Substrate-limited electron dynamics in graphene,” Phys. Rev. B, Vol. 77, pp. 195415, 2008. doi: 10.1103/PhysRevB.77.195415
  • D. Das, and H. Rahaman, “Analysis of crosstalk in single and multiwall carbon nanotube interconnects and its impact on gate oxide reliability,” IEEE Trans. Nanotechnol., Vol. 10, no. 6, pp. 1362–1370, Nov. 2011. doi: 10.1109/TNANO.2011.2146271
  • M. Sahoo, and H. Rahaman, “Modeling of crosstalk induced effects in copper-based nanointerconnects: an ABCD parameter Matrix-based approach,” J. Circuits Syst. Comput., Vol. 24, no. 2, pp. 1–22, Feb. 2015. doi: 10.1142/S0218126615400071
  • M. Sahoo, P. Ghosal, and H. Rahaman, “Modeling and analysis of crosstalk induced effects in multiwalled carbon nanotube bundle interconnects: an ABCD parameter-based approach,” IEEE Trans. Nanotechnol., Vol. 14, no. 2, pp. 259–74, Mar. 2015. doi: 10.1109/TNANO.2014.2388252
  • S. Bhattacharya, D. Das, and H. Rahaman, “Reduced thickness interconnect model using GNR to avoid crosstalk effects,” J. Computat. Electron., Vol. 15, pp. 367–380, 2016. doi: 10.1007/s10825-016-0794-5
  • S. Sayil, and L. Yuan, “Modeling single event crosstalk speedup in nanometer technologies,” Microelectron. J., Vol. 46, no. 5, pp. 343–350, 2015. doi: 10.1016/j.mejo.2015.02.002
  • S. Bhattacharya, D. Das, and H. Rahaman. “A novel gnr interconnect model to reduce crosstalk delay,” 2014 Fifth International Symposium on Electronic System Design, Surathkal, Mangalore, 2014, pp. 5–9.
  • L. Jia, and W.-Y. Yin. “Temperature effects on crosstalk in carbon nanotube interconnects,” Microwave Conference, 2008. APMC 2008. Asia-Pacific, Vol. 1, no. 4, Dec. 16–20, 2008.
  • S. Bhattacharya, D. Das, and H. Rahaman, “Analysis of temperature dependent power supply voltage drop in graphene nanoribbon and Cu based power interconnects,” AIMS Materials Science, Vol. 3, no. 4, pp. 1493–506, 2016. doi: 10.3934/matersci.2016.4.1493
  • S. Bhattacharya, D. Das, and H. Rahaman, “Analysis of delay fault in GNR power interconnects,” Int. J. Numer. Model.: Electron. Netw. Devices Fields, Vol. 31, no. 3, pp. 1–6, 2018. doi: 10.1002/jnm.2308
  • K. Fuchs, “Conduction electrons in thin metallic films,” In Proceedings of the Cambridge Philosophical Society, Vol. 34, pp. 100, 1938.
  • E. H. Sondheimer, “The mean free path of electrons in metals,” Adv. Phys., Vol. 1, no. 1, pp. 1–42, Jan. 1952. doi: 10.1080/00018735200101151
  • A. F. Mayadas, and M. Shatzkes, “Electrical-resistivity model for polycrystalline films: the case of arbitrary reflection at external surfaces,” Physical Review B, Vol. 1, no. 4, pp. 1382–1389, Feb. 1970. doi: 10.1103/PhysRevB.1.1382
  • Predictive Technology Model, 2008, [Online]. Available: http://ptm.asu.edu.
  • International Technology Roadmap for Semiconductors (ITRS-2011). [Online] Available: http://www.itrs.net/reports.html.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.