122
Views
4
CrossRef citations to date
0
Altmetric
Articles

Visible Range Characterization of Au/Graphene-GaAs Schottky Junctions in MESFET

ORCID Icon &

References

  • M. S. P. Reddy, B.-J. Kim, and J.-S. Jang, “Dual detection of ultraviolet and visible lights using a DNA-CTMA/GaN photodiode with electrically different polarity,” Optics Express [Online], Vol. 22, no. 1, pp. 908–15, 2014, Jan. Available: https://doi.org/10.1364/OE.22.000908.
  • J. V. Gaitonde, and R. B. Lohani. “On Comparative analysis of photovoltaic, forward and reverse characteristics of graphene-GaN/GaAs and Au-GaN/GaAs Schottky junctions in MESFET for Ultraviolet (UV) photodetector applications,” in Proc. 8th International Conference & Workshop (MULTICON-W 2017), India, 2017, pp. 73–82.
  • S. M. Sze, and K. K. Ng. Physics of semiconductor devices. Hoboken, New Jersey: John Wiley and Sons, 2007, pp. 682–790.
  • B. L. Sharma. Metal-Semiconductor Schottky barrier junctions and their applications. New York: Plenum, 1984. ch. 5.
  • Y. Lu, et al., “Broadband surface plasmon resonance enhanced self-powered graphene/GaAs photodetector with ultrahigh detectivity,” Nano Energy [Online], Vol. 47, pp. 140–49, 2018, May. Available: https://doi.org/10.1016/j.nanoen.2018.02.056.
  • X. Li, et al., “18.5% efficient graphene/GaAs van der Waals heterostructure solar cell,” Nano Energy [Online], Vol. 16, pp. 310–19, 2015, Sep. Available: https://doi.org/10.1016/j.nanoen.2015.07.003.
  • Y. Luo, et al., “A graphene/single GaAs nanowire Schottky junction photovoltaic device,” Nanoscale [Online], Vol. 10, no. 19, pp. 9212–17, 2018, Apr. Available: https://doi.org/10.1039/C8NR00158H.
  • C. Xie, et al., “High-efficiency, air stable graphene/Si micro-hole array Schottky junction solar cells,” Journal of Materials Chemistry A [Online], Vol. 1, no. 48, pp. 15348–54, 2013, Oct. Available: https://doi.org/10.1039/C3TA13750C.
  • S. Sharma, A. Sumathi, and C. Periasamy, “Photodetection properties of ZnO/Si heterojunction diode: A simulation Study,” IETE Technical Review [Online], Vol. 34, no. 1, pp. 83–90, 2017, Jan. Available: https://doi.org/10.1080/02564602.2016.1145558.
  • M. Hanzaz, A. Bouhdada, F. Vigue, and J. P. Faurie, “Znse–and GaN-based Schottky barrier photodetectors for Blue and ultraviolet detection,” Journal of Active and Passive Electronic Devices, Vol. 2, pp. 165–9, 2007.
  • A. Keffous, M. Zitouni, Y. Belkacem, H. Menari, and W. Chergui, “Fabrication and characterization of Au/n-Si photodiode with lithium as back-surface-field,” Applied Surface Science [Online], Vol. 199, no. 1–4, pp. 22–30, 2002, Oct. Available: doi: 10.1016/S0169-4332(02)00162-9
  • C. K. Chen, B. Nechay, and B.-Y. Tsaur, “Ultraviolet, visible, and infrared response of PtSi Schottky-barrier detectors operated in the front-illuminated mode,” IEEE Transactions on Electron Devices [Online], Vol. 38, no. 5, pp. 1094–103, 1991. May. Available: https://doi.org/10.1109/16.78384.
  • K. S. Gour, O. P. Singh, B. Bhattacharyya, R. Parmar, S. Husale, T. D. Senguttuvan, and V. N. Singh, “Enhanced photoresponse of Cu2ZnSn(S,Se)4 based photodetector in visible range,” Journal of Alloys and Compounds [Online], Vol. 694, pp. 119–23, 2017, Feb. Available: https://doi.org/10.1016/j.jallcom.2016.09.299.
  • D. B. Velusamy, M. Haque, M. R. Parida, F. Zhang, T. Wu, O. F. Mohammed, and H. N. Alshareef, “2D organic–inorganic hybrid thin films for Flexible UV–visible photodetectors,” Advanced Functional Materials [Online], Vol. 27, no. 15, pp. 1605554, 2017, Apr. (1-9). Available: https://doi.org/10.1002/adfm.201605554.
  • D. Alsaedi, M. Irannejad, K. H. Ibrahim, A. Almutairi, O. Ramahi, and M. Yavuz, “High-responsivity reduced graphene oxide gel photodetectors for visible-light detection with a large detection area and an end-contact interface,” Journal of Materials Chemistry C [Online], Vol. 5, no. 4, pp. 882–8, 2017. Available: https://doi.org/10.1039/C6TC04784J.
  • C. Zhang, et al., “High-performance photodetectors for visible and near-infrared lights based on individual WS2 nanotubes,” Applied Physics Letters [Online], Vol. 100, no. 24, pp. 243101, 2012, Jun. (1–5). Available: https://doi.org/10.1063/1.4729144.
  • X. Xie, et al., “Visible–NIR photodetectors based on CdTe nanoribbons,” Nanoscale [Online], Vol. 4, no. 9, pp. 2914–9, 2012, Mar. Available: https://doi.org/10.1039/C2NR30277B.
  • T. Zhai, et al., “Fabrication of high-quality In2Se3 nanowire arrays toward high-performance visible-light photodetectors,” Acs Nano [Online], Vol. 4, no. 3, pp. 1596–1602, 2010, Feb. Available: https://doi.org/10.1021/nn9012466.
  • Y. Vygranenko, A. Malik, M. Fernandes, R. Schwarz, and M. Vieira, “UV–visible ITO/GaP photodiodes: Characterization and modeling,” Physica Status Solidi (a) [Online], Vol. 185, no. 1, pp. 137–44, 2001, May. Available: doi: 10.1002/1521-396X(200105)185:1<137::AID-PSSA137>3.0.CO;2-R
  • S.-H. Wu, W.-L. Li, B. Chu, Z.-S. Su, F. Zhang, and C. S. Lee, “High performance small molecule photodetector with broad spectral response range from 200 to 900 nm,” Applied Physics Letters [Online], Vol. 99, no. 2, pp. 023305, 2011, July. (1–3). Available: https://doi.org/10.1063/1.3610993.
  • Z. Bai, and Y. Zhang, “Self-powered UV–visible photodetectors based on ZnO/Cu2O nanowire/electrolyte heterojunctions,” Journal of Alloys and Compounds [Online], Vol. 675, pp. 325–30, 2016, Aug. Available: https://doi.org/10.1016/j.jallcom.2016.03.051.
  • J. G. Eden, et al., “Microplasma devices fabricated in silicon, ceramic, and metal/polymer structures: arrays, emitters and photodetectors,” Journal of Physics D: Applied Physics [Online], Vol. 36, no. 23, pp. 2869–77, 2003, Nov. Available: https://doi.org/10.1088/0022-3727/36/23/001.
  • B. Li, L. Zhang, Z. Wu, G. Wang, and H. Jiang, “Ingan visible photodiodes With improved performance using Oxidized Ir Schottky contact,” IEEE Photonics Technology Letters [Online], Vol. 27, no. 21, pp. 2300–3, 2015, July. Available: https://doi.org/10.1109/LPT.2015.2462075.
  • E. Heves, and Y. Gurbuz, “Highly Responsive, solution-based Al/PbS and Au-Ti/PbS Schottky photodiodes for SWIR detection,” IEEE Sensors Journal [Online], Vol. 14, no. 3, pp. 816–20, 2013, Nov. Available: https://doi.org/10.1109/JSEN.2013.2288920.
  • J. V. Gaitonde, and R. B. Lohani. “Photovoltaic characterization of graphene-GaN Schottky junction in MESFET,” in 2017 Conference on Emerging Devices and Smart Systems (ICEDSS), India, 2017, pp. 116–9. Available: https://doi.org/10.1109/ICEDSS.2017.8073669.
  • J. V. Gaitonde, and R. B. Lohani. “UV photodetector based on graphene-GaN Schottky junction in MESFET,” in 2016 Conference on Emerging Devices and Smart Systems (ICEDSS), India, 2016, pp. 30–33. Available: https://doi.org/10.1109/ICEDSS.2016.7587797.
  • A. D. Bartolomeo, “Graphene Schottky diodes: An experimental review of the rectifying graphene/semiconductor heterojunction,” Physics Reports [Online], Vol. 606, pp. 1–58, 2016, Jan. Available: https://doi.org/10.1016/j.physrep.2015.10.003.
  • G. Keiser. Optical Fiber Communications. New Delhi, India: Tata McGraw Hill, 2008. ch. 6.
  • A. A. A. De Salles, “Optical control of GaAs MESFET’s,” IEEE Transactions on Microwave Theory and Techniques [Online], Vol. 31, no. 10, pp. 812–20, 1983, Oct. Available: https://doi.org/10.1109/TMTT.1983.1131611.
  • A. Singh, et al. “Comparison of dark currents of quantum well infrared photodetector structures,” in Proc. 2nd International Conference on Long Wavelength Infrared Detectors and Arrays, Physics and Applications, 1995, pp. 114–123.
  • T. Sprafke, and J. W. Beletic, “High-performance infrared focal plane arrays for space applications,” Opt. Photonics. News., Vol. 19, pp. 22–7, 2008. doi: 10.1364/OPN.19.6.000022
  • H. C. Casey, D. D. Sell, and K. W. Wecht, “Concentration dependence of the absorption coefficient for n- and p-type GaAs between 1.3 and 1.6 eV,” Journal of Applied Physics [Online], Vol. 46, no. 1, pp. 250–7, 1975, Jan. Available: https://doi.org/10.1063/1.321330.
  • N. S. Roy, and B. B. Pal, “Frequency-dependent OPFET characteristics with improved absorption under back illumination,” Journal of Lightwave Technology [Online], Vol. 18, no. 4, pp. 604–13, 2000, Apr. Available: https://doi.org/10.1109/50.838136.
  • M. Hudait, and S. Krupanidhi, “Doping dependence of the barrier height and ideality factor of Au/n-GaAs Schottky diodes at low temperatures,” Physica B: Condensed Matter [Online], Vol. 307, no. 1–4, pp. 125–37, 2001, Dec. Available: doi: 10.1016/S0921-4526(01)00631-7
  • S. Tongay, M. Lemaitre, X. Miao, B. Gila, B. R. Appleton, and A. F. Hebard, “Rectification at graphene-semiconductor interfaces: zero-gap semiconductor-based diodes,” Physical Review X [Online], Vol. 2, no. 1, pp. 011002, 2012, Jan. (1-10). Available: https://doi.org/10.1103/PhysRevX.2.011002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.