177
Views
1
CrossRef citations to date
0
Altmetric
Articles

Microdevices for Low-Level Acetone Gas Sensing Using Tungsten Trioxides

ORCID Icon &

References

  • Z. Wang, and C. Wang, “Is breathe acetone a biomarker of diabetes? A historical review on breath acetone measurements,” J. Breath Res., Vol. 7, no. 3, pp. 037109, Aug. 2013. doi: 10.1088/1752-7155/7/3/037109
  • P. Makaram, D. Owens, and J. Aceros, “Trends in nanomaterial-based non-invasive diabetes sensing technologies,” Diagnostics, Vol. 4, no. 2, pp. 27–46, Apr. 2014. doi: 10.3390/diagnostics4020027
  • X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, and H. Ning, “A survey on gas sensing technology,” Sensors, Vol. 12, no. 7, pp. 9635–9665, Jul. 2012. doi: 10.3390/s120709635
  • Z. Yunusa, M. N. Hamidon, A. Kaiser, and Z. Awang, “Gas sensors: A review,” Sensors & Transducers, Vol. 168, no. 4, pp. 61–75, Apr. 2014.
  • P. Gao, H. Ji, Y. Zhou, and X. Li, “Selective acetone gas sensors using porous WO3–Cr2O3 thin films prepared by sol–gel method,” Thin Solid Films, Vol. 520, no. 7, pp. 3100–3106, Jan. 2012. doi: 10.1016/j.tsf.2011.12.003
  • J. Shi, G. Hu, Y. Sun, M. Geng, J. Wu, Y. Liu, M. Ge, J. Tao, M. Cao, and N. Dai, “WO3 nanocrystals: Synthesis and application in highly sensitive detection of acetone,” Sensors and Actuators B, Vol. 156, no. 2, pp. 820–824, Aug. 2011. doi: 10.1016/j.snb.2011.02.047
  • R. S. Khadayate, J. V. Sali, and P. P. Patil, “Acetone vapor sensing properties of screen printed WO3 thick films,” Talanta, Vol. 72, no. 3, pp. 1077–1081, May 2007. doi: 10.1016/j.talanta.2006.12.043
  • C. Kamble, M. Panse, and A. Nimbalkar, “Ag decorated WO3 sensor for the detection of sub-ppm level NO2 concentration in air,” Mater. Sci. Semicond. Process., Vol. 103, pp. 104613, Nov. 2019. doi: 10.1016/j.mssp.2019.104613
  • C. Kamble, and M. S. Panse. “Interdigitated electrodes and microcantilever devices for sensitive gas sensor using tungsten trioxide,” In Proceedings of the 2nd International Conference on Data Engineering and Communication Technology, Singapore: Springer, 2019, pp. 337–344.
  • S. J. Patil, N. Duragkar, and V. R. Rao, “An ultra-sensitive piezoresistive polymer nanocomposite microcantilever sensor electronic nose platform for explosive vapour detection,” Sensors and Actuators B, Vol. 192, pp. 444–451, Mar. 2014. doi: 10.1016/j.snb.2013.10.111
  • A. Boisen, S. Dohn, S. S. Keller, S. Schmid, and M. Tenje, “Cantilever-like micromechanical sensors,” Rep. Prog. Phys., Vol. 74, no. 3, pp. 036101, Feb. 2011. doi: 10.1088/0034-4885/74/3/036101
  • M. Joshi, P. S. Gandhi, R. Lal, V. R. Rao, and S. Mukherji, “Modeling, simulation, and design guidelines for piezoresistive affinity cantilevers,” J. Microelectromech. Syst., Vol. 20, no. 3, pp. 774–784, Jun. 2011. doi: 10.1109/JMEMS.2011.2140353
  • S. Subhashini, and A. V. Juliet, “Analytical investigations involved in a microcantilever for gas detection,” Indian Journal of Emerging Electronics in Computer Communications, Vol. 2, pp. 301–305, 2015.
  • H. Kalita, V. S. Palaparthy, M. S. Baghini, and M. Aslam, “Graphene quantum dot soil moisture sensor,” Sens. Actuators, B, Vol. 233, pp. 582–590, Oct. 2016. doi: 10.1016/j.snb.2016.04.131
  • M. Righettoni, A. Amann, and S. E. Pratsinis, “Breath analysis by nanostructured metal oxides as chemo-resistive gas sensors,” Mater. Today, Vol. 18, no. 3, pp. 163–171, Apr. 2015. doi: 10.1016/j.mattod.2014.08.017
  • F. Liu, G. Kolesov, and B. A. Parkinson, “Time of flight electrochemistry: diffusion coefficient measurements using interdigitated array (IDA) electrodes,” J. Electrochem. Soc., Vol. 161, no. 13, pp. H3015–H3019, Jan. 2014. doi: 10.1149/2.0041413jes
  • S. K. Kim, P. J. Hesketh, C. Li, J. H. Thomas, H. B. Halsall, and W. R. Heineman, “Fabrication of comb interdigitated electrodes array (IDA) for a microbead-based electrochemical assay system,” Biosens. Bioelectron., Vol. 20, no. 4, pp. 887–894, Nov. 2004. doi: 10.1016/j.bios.2004.04.004
  • K. Aoki, M. Morita, O. Niwa, and H. Tabei, “Quantitive analysis of reversible diffusion-controlled currents of redox soluble species at interdigitated array electrodes under steady-state conditions,” J. Electroanal. Chem. Interfacial Electrochem., Vol. 256, no. 2, pp. 269–282, Dec. 1988. doi: 10.1016/0022-0728(88)87003-7
  • J. F. Alexander, D. T. Price, and S. Bhansali, “Optimization of interdigitated electrode (IDE) arrays for impedance based evaluation of Hs 578 T cancer cells,” J. Phys: Conf. Ser., Vol. 224, no. 1, pp. 012134, 2010.
  • J. Min, and A. J. Baeumner, “Characterization and optimization of interdigitated ultramicroelectrode arrays as electrochemical biosensor transducers,” Electroanalysis, Vol. 16, no. 9, pp. 724–729, May 2004. doi: 10.1002/elan.200302872
  • D. Chen, et al., “Effects of morphologies on acetone-sensing properties of tungsten trioxide nanocrystals,” Sens. Actuators, B, Vol. 153, no. 2, pp. 373–381, Apr. 2011. doi: 10.1016/j.snb.2010.11.001
  • D. Chen, et al., “The enhanced alcohol-sensing response of ultrathin WO3 nanoplates,” Nanotechnology, Vol. 21, no. 3, pp. 035501, Dec. 2009. doi: 10.1088/0957-4484/21/3/035501
  • C. Kamble, and M. Panse, “IDE embedded tungsten trioxide gas sensor for sensitive NO2 detection,” Mater. Chem. Phys., Vol. 224, pp. 257–263, 2019. doi: 10.1016/j.matchemphys.2018.12.015

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.