78
Views
0
CrossRef citations to date
0
Altmetric
Articles

Periodic Metallic Stepped Slits for Entire Transmission of Optical Wave and Efficient Transmission of Terahertz Wave

, &

References

  • T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature, Vol. 391, pp. 667–669, Feb. 1998. doi: 10.1038/35570
  • S. V. Pushpakaran, et al. “An experimental verification of metamaterial coupled enhanced transmission for antenna applications,” Appl. Phys. Lett., Vol. 104, no. 6, p. 064102, Feb. 2014. doi: 10.1063/1.4865763
  • F. Beijnum, P. Veldhoven, E. Geluk, G. W. Hooft, and M. P. Exter, “Loss compensation of extraordinary optical transmission,” Appl. Phys. Lett., Vol. 104, no. 6, p. 061112, Feb. 2014. doi: 10.1063/1.4865416
  • F. Miyamaru, M. Kamijyo, N. Hanaoka, and M. W. Takeda, “Controlling extraordinary transmission characteristics of metal hole arrays with spoof surface plasmons,” Appl. Phys. Lett., Vol. 100, no. 8, p. 081112, Feb. 2012. doi: 10.1063/1.3689784
  • A. Khavasi, M. Edalatipour, and K. Mehrany, “Circuit model for extraordinary transmission through periodic array of subwavelength stepped slits,” IEEE Trans. Antenna Propag., Vol. 61, no. 4, pp. 2019–2024, Apr. 2013. doi: 10.1109/TAP.2012.2237152
  • N. Wang, M. R. Hashemi, and M. Jarrahi, “Plasmonic photoconductive detectors for enhanced terahertz detection sensitivity,” Opt. Exp., Vol. 21, no. 14, pp. 17221–7, Jul. 2013. doi: 10.1364/OE.21.017221
  • J. C. Yang, J. Ji, J. M. Hogle, and D. N. Larson, “Metallic nanohole arrays on fluoropolymer substrates as small label-free real-time bioprobes,” Nano Lett., Vol. 8, no. 9, pp. 2718–2724, Aug. 2008. doi: 10.1021/nl801043t
  • S. H. Baek, J. H. Kang, Y. H. Hwang, K. M. Ok, K. Kwak, and H. S. Chun, “Detection of methomyl, a carbamate insecticide, in food matrices using terahertz time-Domain spectroscopy,” J. Infrared Milli. Terahz. Waves, Vol. 37, no. 5, pp. 486–497, May 2016. doi: 10.1007/s10762-015-0234-9
  • K. G. Wilcox, et al. “Terahertz imaging system based on LT-GaAsSb antenna driven by all-semiconductor femtosecond source,” Electron. Lett., Vol. 42, no. 20, pp. 1159–1160, 2006. doi: 10.1049/el:20061825
  • A. Hartschuh, E. J. Sanchez, X. S. Xie, and L. Novotny, “High-resolution near-field Raman microscopy of single-walled carbon nanotubes,” Phys. Rev. Lett., Vol. 90, p. 095503, 2003. doi: 10.1103/PhysRevLett.90.095503
  • H. Frey, S. Witt, K. Felderer, and R. Guckenberger, “High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip,” Phys. Rev. Lett., Vol. 93, p. 200801, 2004. doi: 10.1103/PhysRevLett.93.200801
  • R. Zhang, X. G. Guo, J. C. Cao, and H. C. Liu, “Near field and cavity effects on coupling efficiency of one-dimensional metal grating for terahertz quantum well photodetectors,” J. Appl. Phys., Vol. 109, pp. 073110–5, Apr. 2011.
  • C. Chang, H. Chang, C. Chen, M. Tsai, Y. Chang, S. Lee, and S. Tang, “Wavelength selective quantum dot infrared photodetector with periodic metal hole arrays,” Appl. Phys. Lett., Vol. 91, p. 163107, Oct. 2007.
  • A. Karar, C. L. Tan, K. Alameh, Y. T. Lee, and F. Karouta, “Metal nano-grating optimization for higher responsivity plasmonic-based GaAs metal-semiconductor-metal photodetector,” J. Lightwave Tech., Vol. 31, no. 7, pp. 1088–1092, Apr. 2013. doi: 10.1109/JLT.2013.2243108
  • L. Wen, F. Sun, and Q. Chen, “Cascading metallic gratings for broadband absorption enhancement in ultrathin plasmonic solar cells,” Appl. Phys. Lett., Vol. 104, p. 151106, Apr. 2014.
  • A. Shang and X. Li, “Carrier depletion and electrical optimization of gallium arsenide plasmonic solar cell with a rear metallic grating,” Appl. Phys. Lett., Vol. 106, p. 051107, Feb. 2015. doi: 10.1063/1.4907545
  • M. Dowran, A. Kumar, B. J. Lawrie, R. C. Pooser, and A. M. Marino, “Quantum-enhanced plasmonic sensing,” Optica, Vol. 5, pp. 628–633, May 2018. doi: 10.1364/OPTICA.5.000628
  • N. T. Yardimci, S.-H. Yang, C. W. Berry, and M. Jarrahi, “High-power terahertz generation using large-area plasmonic photoconductive emitters,” IEEE. Trans. Terahertz. Sci. Technol., Vol. 5, no. 2, pp. 223–229, 2015. doi: 10.1109/TTHZ.2015.2395417
  • Y. Lee, Principles of Terahertz Science and Technology. New York (NY): Springer, 2009, p. 340.
  • P. Maraghechi and A. Y. Elezzabi, “The role of self-similarity in fractal photoconductive thz emitters,” J. Infrared Milli. Terahz. Waves, Vol. 32, pp. 1285–1290, Nov. 2011. doi: 10.1007/s10762-011-9827-0
  • D. S. Kim and D. S. Citrin, “Coulomb and radiation screening in photoconductive terahertz sources,” App. Phys. Lett., Vol. 88, p. 161117, Apr. 2006.
  • G. Chattopadhyay, “Technology, capabilities, and performance of low power terahertz sources,” IEEE Trans. Terahertz Sci. Tech., Vol. 1, no. 1, pp. 33–53, Aug. 2011. doi: 10.1109/TTHZ.2011.2159561
  • M. Khorshidi and G. Dadashzadeh, “Plasmonic photoconductive antennas with rectangular and stepped rods: A theoretical analysis,” JOSA B, Vol. 33, no. 12, pp. 2502–2511, Dec. 2016. doi: 10.1364/JOSAB.33.002502
  • N. Khiabani, Y. Huang, Y. Shen, and S. Boyes, “Theoretical modeling of a photoconductive antenna in a terahertz pulsed system,” IEEE Trans. on Antennas and Propagation, Vol. 61, no. 4, pp. 1538–1546, Apr. 2013. doi: 10.1109/TAP.2013.2239599
  • C. Berry and M. Jarrahi, “Plasmonic photoconductive antennas for high power terahertz generation”, In Proc. IEEE Int. Antennas and Propagation Symp. Chicago, IL, Jul. 2012, pp 1–2, 8–14.
  • C. Berry and M. Jarrahi, “High-performance photoconductive terahertz sources based on nanoscale contact electrode gratings”, In IEEE International Microwave Symposium, Digest (MTT), Montreal, Jun. 2012, pp. 1–3, 17–22.
  • S. Yang, M. R. Hashemi, C. W. Berry, and M. Jarrahi, “7.5% optical-to-terahertz conversion efficiency offered by photoconductive emitters with three-dimensional plasmonic contact electrodes,” IEEE Trans. Terahertz Sci. Tech., Vol. 4, pp. 575–581, 2014. doi: 10.1109/TTHZ.2014.2342505
  • S. Zafari, G. Dadashzadeh, and M. Khorshidi, “Complete optical transmission through nano-scale periodic metallic structure with three-stepped slits,” Photon Nanostruct. Fundam. Appl., Vol. 34, pp. 24–30, 2019. doi: 10.1016/j.photonics.2019.02.003
  • R. Hwang, Periodic Structures: Mode-Matching Approach and Applications in Electromagnetic Engineering. Singapore: John Wiley and Sons, 2013, p. 320.
  • D. M. Pozar, Microwave Engineering. New York: John Wiley and Sons, 2011, p. 752.
  • T. Takagi, “Refractive index of Ga1-xInxAs prepared by Vapor-Phase. Epitaxy,” Jpn. J. Appl. Phys., Vol. 17, no. 10, pp. 1813–1817, Apr. 1978. doi: 10.1143/JJAP.17.1813
  • G. Carpintero, E. Garcia-Munoz, H. Hartnagel, S. Preu, and A. Raisanen, Semiconductor TeraHertz Technology: Devices and Systems at Room Temperature Operation. Chennai: John Wiley and Sons, 2015, p. 408.
  • B. Hsieh and M. Jarrahi, “Analysis of periodic metallic nano-slits for efficient interaction of terahertz and optical waves at nano-scale dimensions,” J. Appl. Phys., Vol. 109, p. 084326, Apr. 2011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.