262
Views
3
CrossRef citations to date
0
Altmetric
Articles

Electroencephalogram-Based Pain Classification Using Artificial Neural Networks

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • K. Nidal, and A. S. Malik. EEG/ERP Analysis: Methods and Applications. Boca Raton, FL: CRC Press, 2014.
  • J. L. Kearse, P. Manberg, N. Chamoun, F. deBros, and A. Zaslavsky, “Bispectral analysis of the electroencephalogram correlates with patient movement to skin incision during propofol/nitrous oxide anaesthesia,” Anesthesiology, Vol. 81, no. 6, pp. 1365–70, 1994. doi: 10.1097/00000542-199412000-00010
  • S. Kumar, A. Kumar, A. Trikha, and S. Anand, “Changes in electroencephalogram pattern by ice cube cold pressor stimulus,” Int. J. Med. Eng. Inform., Vol. 4, no. 3, pp. 215–22, 2012.
  • S. Kumar, A. Kumar, A. Trikha, S. Anand, and P. Gantla, “Higuchi fractal dimension as a measure of analgesia,” Int. J. Med. Eng. Inform., Vol. 4, no. 1, pp. 66–72, 2012.
  • M. Vatankhah, V. Asadpour, and R. Fazel-Rezai, “Perceptual pain classification using ANFIS adapted RBF kernel support vector machine for therapeutic usage,” Appl. Soft. Comput., Vol. 13, no. 5, pp. 2537–46, 2013. doi: 10.1016/j.asoc.2012.11.032
  • R. R. Nir, A. Sinai, R. Moont, E. Harari, and D. Yarnitsky, “Tonic pain and continuous EEG: prediction of subjective pain perception by alpha-1 power during stimulation and at rest,” Clin. Neurophysiol., Vol. 123, no. 3, pp. 605–12, 2012. doi: 10.1016/j.clinph.2011.08.006
  • P. Panavaranan, and Y. Wongsawat. “Transcutaneous electrical nerve stimulation based pain control system via Q-EEG validation,” In Biomedical Engineering International Conference (BMEiCON), pp. 1–4, Nov. 2014.
  • P. Panavaranan, and Y. Wongsawat. “EEG-based pain estimation via fuzzy logic and polynomial kernel support vector machine,” In Biomedical Engineering International Conference (BMEiCON), pp. 1–4, Oct. 2013.
  • S. Shao, K. Shen, K. Yu, E. P. Wilder-Smith, and X. Li, “Frequency-domain EEG source analysis for acute tonic cold pain perception,” Clin. Neurophysiol., Vol. 123, no. 10, pp. 2042–49, 2012. doi: 10.1016/j.clinph.2012.02.084
  • D. Rissacher, R. Dowman, and S. A. C. Schuckers. “Identifying frequency-domain features for an EEG-based pain measurement system,” In Bioengineering Conference, 2007. NEBC’07. IEEE33rd Annual Northeast, pp. 114–5, Mar. 2007.
  • P. F. Chang, L. Arendt-Nielsen, and A. C. Chen, “Dynamic changes and spatial correlation of EEG activities during cold pressor test in man,” Brain Res. Bull., Vol. 57, no. 5, pp. 667–75, 2002. doi: 10.1016/S0361-9230(01)00763-8
  • S. Ferracuti, S. Seri, D. Mattia, and G. Cruccu, “Quantitative EEG modifications during the cold water pressor test: hemispheric and hand differences,” Int. J. Psychophysiol., Vol. 17, no. 3, pp. 261–8, 1994. doi: 10.1016/0167-8760(94)90068-X
  • N. Leema, H. K. Nehemiah, and A. Kannan, “Neural network classifier optimization using differential evolution with global information and back propagation algorithm for clinical datasets,” Appl. Soft. Comput., Vol. 49, pp. 834–44, 2016. doi: 10.1016/j.asoc.2016.08.001
  • U. Orhan, M. Hekim, and M. Ozer, “EEG signals classification using the K-means clustering and a multilayer perceptron neural network model,” Expert. Syst. Appl., Vol. 38, no. 10, pp. 13475–81, 2011. doi: 10.1016/j.eswa.2011.04.149
  • D. G. Bounds, P. J. Lloyd, B. Mathew, and G. Waddell. “A multilayer perceptron network for the diagnosis of low back pain.” In Proc. IEEE Int. Conf. on Neural Networks, Vol. 2, pp. 481–9, Jul. 1988.
  • S. Soman, “High performance EEG signal classification using classifiability and the twin SVM,” Appl. Soft. Comput., Vol. 30, pp. 305–18, 2015. doi: 10.1016/j.asoc.2015.01.018
  • H. Pant, S. Soman, and M. Sharma. “Twin Neural Networks for Efficient EEG Signal Classification,” In 2018 International Joint Conference on Neural Networks (IJCNN), pp. 1–7, Jul. 2018.
  • H. Pant, S. Soman, and M. Sharma. “Scalable twin neural networks for classification of unbalanced data,” arXiv preprint arXiv:1705.00347, 2017.
  • Y. Ren, and Y. Wu. “Convolutional deep belief networks for feature extraction of EEG signal,” in Neural Networks (IJCNN), 2014 International Joint Conference on IEEE, pp. 2850–3, 2014.
  • B. Xia, Q. Li, J. Jia, J. Wang, U. Chaudhary, A. Ramos-Murguialday, and N. Birbaumer. “Electrooculogram based sleep stage classification using deep belief network,” in Neural Networks (IJCNN), 2015 International Joint Conference on IEEE, pp. 1–5, 2015.
  • N. Thammasan, K.-I. Fukui, and M. Numao. “Application of deep belief networks in eeg-based dynamic music-emotion recognition,” in Neural Networks (IJCNN) 2016 International Joint Conference on IEEE, pp. 881–8, 2016.
  • L. Vidyaratne, A. Glandon, M. Alam, and K. M. Iftekharuddin. “Deep recurrent neural network for seizure detection, in Neural Networks (IJCNN),” 2016 International Joint Conference on. IEEE, pp. 12027, 2016.
  • M. Vatankhah, and A. Toliyat, “Pain level measurement using discrete wavelet transform,” International Journal of Engineering and Technology, Vol. 8, no. 5, pp. 380–4, 2016. doi: 10.7763/IJET.2016.V8.917
  • H. H. Jasper, “The ten twenty electrode system of the international federation,” Electroencephalogr. Clin. Neurophysiol., Vol. 10, pp. 371–5, 1958.
  • G. H. Klem, H. O. Lüders, H. H. Jasper, and C. Elger, “The ten-twenty electrode system of the International Federation,” Electroencephalogr. Clin. Neurophysiol., Vol. 52, no. 3, pp. 3–6, 1999.
  • Y. Tu, Y. S. Hung, Z. Zhang, and L. Hu. “Prediction of pain perception using multivariate pattern analysis of laser-evoked EEG oscillations,” In Control Automation Robotics & Vision (ICARCV), 2014 13th International Conference on, pp. 13–16, 2014.
  • L. Hu, and Z. Zhang. “Detection of pain from nociceptive laser-evoked potentials using single-trial analysis and pattern recognition,” In Signal Processing, Communication and Computing (ICSPCC), 2012 IEEE International Conference, pp. 67–71, Aug. 2012.
  • H. Demuth, M. Beale, and M. Hagan. “Neural network toolboxTM 6. User’s guide,” pp. 37–55, 2008.
  • S. Sharma. “Activation Functions: Neural Networks,” Towards Data Science, 2017. Available: https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6.
  • B. Sharma, and K. Venugopalan, “Comparison of neural network training functions for hematoma classification in brain CT images,” IOSR-JCE, Vol. 16, no. 1, pp. 31–5, 2014. doi: 10.9790/0661-16123135

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.