101
Views
0
CrossRef citations to date
0
Altmetric
Articles

Analytical Prediction of Optimal Split Ratio for Short-Time Duty PM Brushless DC Motors Considering Winding Thermal Limitation

ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon

REFERENCES

  • L. Y. Li, J. P. Zhang, H. Y. Yan, and J. K. Yu, “Electromagnetic characteristics on high overload permanent magnet synchronous motor,” Trans. China Electrotech. Soc., Vol. 32, no. 2, pp. 125–34, Jan. 2017.
  • Rotating electrical machines-Part 1: Rating and performance, IEC Standard 60034-1, 2010.
  • L. Y. Li, J. P. Zhang, H. Y. Yan, and J. K. Yu, “Study on the optimization of thermal conductivity and 3D temperature filed calculation for the high-power -density motor,” Proc. CSEE, Vol. 36, no. 13, pp. 3642–50, Jul. 2016.
  • A. Boglietti, M. Cossale, S. Vaschetto, and T. Dutra, “Winding thermal model for short-time transient: experimental validation in operative conditions,” IEEE Trans. Ind. Appl., Vol. 54, no. 2, pp. 1312–19, Mar./Apr. 2018. doi: 10.1109/TIA.2017.2777920
  • M. A. Valenzuela, P. V. Verbakel, and J. A. Rooks, “Thermal evaluation for applying TEFC induction motors on short-time and intermittent duty cycles,” IEEE Trans. Ind. Appl., Vol. 39, no. 1, pp. 45–52, Feb. 2003. doi: 10.1109/TIA.2002.807244
  • Q. F. Lu, X. M. Zhang, Y. Chen, X. Y. Huang, Y.-Y. Ye, and Z. Q. Zhu, “Modeling and investigation of thermal characteristics of a water-cooled permanent-magnet linear motor,” IEEE Trans. Ind. Appl., Vol. 51, no. 3, pp. 2086–96, Jun. 2015. doi: 10.1109/TIA.2014.2365198
  • A. Boglietti, E. Carpaneto, M. Cossale, and S. Vaschetto, “Stator-winding thermal models for short-time thermal transients: definition and validation,” IEEE Trans. Ind. Electron., Vol. 63, no. 5, pp. 2713–21, Nov. 2016. doi: 10.1109/TIE.2015.2511170
  • K. N. Gyftakis, M. Sumislawska, D. F. Kavanagh, D. A. Howey, and M. D. McCulloch, “Dielectric characteristics of electric vehicle traction motor winding insulation under thermal aging,” IEEE Trans. Ind. Appl., Vol. 52, no. 2, pp. 1398–404, Mar./Apr. 2016.
  • M. Sumislawska, K. N. Gyftakis, D. F. Kavanagh, M. McCulloch, K. J. Burnham, and D. A. Howey, “The impact of thermal degradation on properties of electrical machine winding insulation material,” IEEE Trans. Ind. Appl., Vol. 52, no. 4, pp. 2951–60, Jul./Aug. 2016. doi: 10.1109/TIA.2016.2544745
  • M. Galea, C. Gerada, T. Raminosoa, and P. Wheeler, “A thermal improvement technique for the phase windings of electrical machines,” IEEE Trans. Ind. Appl., Vol. 48, no. 1, pp. 79–87, Jan./Feb. 2012. doi: 10.1109/TIA.2011.2175470
  • Y. G. Chen, J. Zheng, J. Wei, Z. P. Zheng, and X. B. Guo, “Design of PMSM for actuator and its temperature field analysis,” Trans. China Electrotech. Soc., Vol. 30, no. 14, pp. 94–9, Jul. 2015.
  • M. Baranski, and W. Szelag, “Finite-element analysis of transient electromagnetic–thermal phenomena in a squirrel-cage motor working at cryogenic temperature,” IET Sci. Meas. Technol., Vol. 6, no. 5, pp. 357–63, May 2012. doi: 10.1049/iet-smt.2011.0115
  • P. Zhang, G. Y. Sizov, M.-Y. Li, D. M. Ionel, N. A. O. Demerdash, S. J. Stretz, and A. W. Yeadon, “Multi-objective tradeoffs in the design optimization of a brushless permanent-magnet machine with fractional-slot concentrated windings,” IEEE Trans. Ind. Appl., Vol. 50, no. 5, pp. 3285–3294, Sept./Oct. 2014. doi: 10.1109/TIA.2014.2309716
  • S. Dunkl, A. Muetze, and G. Schoener, “Design constraints of small single-phase permanent magnet brushless DC drives for fan applications,” IEEE Trans. Ind. Appl., Vol. 51, no. 4, pp. 3178–86, Jul./Aug. 2015. doi: 10.1109/TIA.2015.2406856
  • Z. Kolondzovski, A. Arkkio, J. Larjola, and P. Sallinen, “Power limits of high-speed permanent-magnet electrical machines for compressor applications,” IEEE Trans. Energy Convers., Vol. 26, no. 1, pp. 73–82, Mar. 2011. doi: 10.1109/TEC.2010.2089459
  • X. Jannot, J.-C. Vannier, C. Marchand, M. Gabsi, J. Saint-Michel, and D. Sadarnac, “Multiphysic modeling of a high-speed interior permanent-magnet synchronous machine for a multiobjective optimal design,” IEEE Trans. Energy Convers., Vol. 26, no. 2, pp. 457–67, Jun. 2011. doi: 10.1109/TEC.2010.2090156
  • S. A. Semidey, Y. Duan, J. R. Mayor, R. G. Harley, and T. G. Habetler, “Optimal electromagnetic-thermo-mechanical integrated design candidate search and selection for surface-mount permanent-magnet machines considering load profiles,” IEEE Trans. Ind. Appl., Vol. 47, no. 6, pp. 2460–8, Nov./Dec. 2011. doi: 10.1109/TIA.2011.2168589
  • D. Hanselman. Brushless Permanent Magnet Motor Design: Second Edition. Lebanon, OH: Magna Physics Publishing, 2006.
  • Q. L. Li, M. F. Dou, and C. Fang. Analytical determination of optimal split ratio for high-speed permanent magnet brushless motors, in Proc. International Conference on Electrical Machines and Systems, 2015, pp. 636–640.
  • J. Li, K. Wang, and F. Li, “Analytical prediction of optimal split ratio of consequent-pole permanent magnet machines,” IET Electr. Power Appl., Vol. 12, no. 3, pp. 365–72, Mar. 2018. doi: 10.1049/iet-epa.2017.0431
  • Y. Pang, Z. Q. Zhu, and D. Howe, “Analytical determination of optimal split ratio for permanent magnet brushless motors,” IEE Proc. – Electr. Power Appl., Vol. 153, no. 1, pp. 7–13, Jan. 2006. doi: 10.1049/ip-epa:20050304
  • L. J. Wu, Z. Q. Zhu, J. T. Chen, Z. P. Xia, and G. W. Jewell, “Optimal split ratio in fractional-slot interior permanent-magnet machines with non-overlapping windings,” IEEE Trans. Magn., Vol. 46, no. 5, pp. 1235–42, May 2010. doi: 10.1109/TMAG.2009.2038482
  • W. Q. Chu, Z. Q. Zhu, and J. T. Chen, “Simplified analytical optimization and comparison of torque densities between electrically excited and permanent-magnet machines,” IEEE Trans. Ind. Electron., Vol. 61, no. 9, pp. 5000–11, Sept. 2014. doi: 10.1109/TIE.2013.2279119
  • Y. Shen, and Z. Q. Zhu, “Analytical prediction of optimal split ratio for fractional-slot external rotor PM brushless machines,” IEEE Trans. Magn., Vol. 47, no. 10, pp. 4187–90, Oct. 2011. doi: 10.1109/TMAG.2011.2147286
  • D. Lekić, and S. Vukosavić, “Split ratio optimization of high torque density PM BLDC machines considering copper loss density limitation and stator slot leakage,” Int. J. Electr. Power Energy Syst., Vol. 100, pp. 231–9, Sept. 2018. doi: 10.1016/j.ijepes.2018.02.029
  • T. Reichert, T. Nussbaumer, and J. W. Kolar, “Split ratio optimization for high-torque PM motors considering global and local thermal limitations,” IEEE Trans. Energy Convers., Vol. 28, no. 3, pp. 493–501, Sept. 2013. doi: 10.1109/TEC.2013.2259169
  • Q. W. Li, and M. F. Dou, “Split ratio optimization method for dual-redundancy brushless DC motors considering thermal limitations,” Trans. China Electrotech. Soc., Vol. 30, no. 22, pp. 19–26, Nov. 2015.
  • D. Gerada, A. Mebarki, N. L. Brown, K. J. Bradley, and C. Gerada, “Design aspects of high-speed high-power-density laminated-rotor induction machines,” IEEE Trans. Ind. Electron., Vol. 58, no. 9, pp. 4039–47, Sept. 2011. doi: 10.1109/TIE.2010.2098364
  • Z. X. Xiang, L. Quan, X. Y. Zhu, J. Huang, and D. Y. Fan, “Investigation of optimal split ratio in brushless dual-rotor flux-switching permanent magnet machine considering power allocation,” IEEE Trans. Magn., Vol. 54, no. 3, pp. 1–4, Mar. 2018. doi: 10.1109/TMAG.2017.2769451
  • X. G. Fan, R. H. Qu, B. Zhang, J. Li, and D. W. Li. “Split ratio optimization of high-speed permanent magnet synchronous machines based on thermal resistance network,” in Proc. the XXII International Conference on Electrical Machines, Lausanne, Switzerland, Sept. 4-7, 2016, pp. 2059–2065.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.