221
Views
6
CrossRef citations to date
0
Altmetric
Review Article

Control of Three-Phase Induction Machine Drives During Open-Circuit Fault: A Review

, ORCID Icon, ORCID Icon &

References

  • P. C. Sen, Principles of Electric Machines and Power Electronics. Kingston: John Wiley-Sons, 2007.
  • E. Dehghan-Azad, S. Gadoue, D. Atkinson, H. Slater, P. Barrass, and F. Blaabjerg, “Sensorless control of IM for Limp-home mode EV applications,” IEEE Trans. Power Electr., Vol. 32, pp. 7140–7150, 2017. doi: 10.1109/TPEL.2016.2627685
  • M. Jannati, S. A. Anbaran, S. H. Asgari, W. Y. Goh, A. Monadi, M. J. A. Aziz, and N. R. N. Idris, “A review on variable speed control techniques for efficient control of single-phase induction motors: evolution, classification, comparison,” J. Renew. Sustain. Ener. Rev., Vol. 75, pp. 1306–1319, 2017. doi: 10.1016/j.rser.2016.11.115
  • S. M. Lu, “A review of high-efficiency motors: specification, policy, and technology,” J. Renew. Sustain. Ener. Rev., Vol. 59, pp. 1–12, 2016. doi: 10.1016/j.rser.2015.12.360
  • R. Saidur, S. Mekhilef, M. B. Ali, A. Safari, and H. A. Mohammed, “Applications of variable speed drive (VSD) in electrical motors energy savings,” J. Renew. Sustain. Ener. Rev., Vol. 16, pp. 543–550, 2012. doi: 10.1016/j.rser.2011.08.020
  • M. A. Hannan, J. A. Ali, A. Mohamed, and A. Hussain, “Optimization techniques to enhance the performance of induction motor drives: a review,” J. Renew. Sustain. Ener. Rev., Vol. 81, pp. 1611–1626, 2018. doi: 10.1016/j.rser.2017.05.240
  • W. Sung, J. Shin, and Y.-s. Jeong, “Energy-efficient and robust control for high-performance induction motor drive with an application in electric vehicles,” IEEE Trans. Veh. Technol., Vol. 61, pp. 3394–3405, 2012. doi: 10.1109/TVT.2012.2213283
  • T. Sutikno, N. R. N. Idris, and A. Jidin, “A review of direct torque control of induction motors for sustainable reliability and energy efficient drives,” J. Renew. Sustain. Ener. Rev., Vol. 32, pp. 548–558, 2014. doi: 10.1016/j.rser.2014.01.040
  • S. S. Turkel. Understanding Variable Speed Drives (Part 2). Baltimore, MD: EC-M, 1999.
  • K. Lee, S. Ahmed, and S. M. Lukic, “Universal restart strategy for scalar (V/f) controlled induction machines,” IEEE Trans. Ind. Appl., Vol. 53, pp. 5489–5495, 2017. doi: 10.1109/TIA.2017.2733497
  • F. Lima, W. Kaiser, I. N. da Silva, and A. A. A. de Oliveira, “Open-loop neuro-fuzzy speed estimator applied to vector and scalar induction motor drives,” Appl. Soft. Comput., Vol. 21, pp. 469–480, 2014. doi: 10.1016/j.asoc.2014.03.044
  • S. Gadoue, M. Armstrong, A. Smith, and J. Finch, “Improved method for the scalar control of induction motor drives,” IET Electr. Power Appl., Vol. 7, pp. 487–498, 2013. doi: 10.1049/iet-epa.2013.0091
  • A. Jidin, N. R. N. Idris, A. H. M. Yatim, T. Sutikno, and M. E. Elbuluk, “Extending switching frequency for torque ripple reduction utilizing a constant frequency torque controller in dtc of induction motors,” J Power Electron., Vol. 11, pp. 148–155, 2011. doi: 10.6113/JPE.2011.11.2.148
  • S. Odhano, R. Bojoi, A. Formentini, P. Zanchetta, and A. Tenconi, “Direct flux and current vector control for induction motor drives using model predictive control theory,” IET Electr. Power Appl., Vol. 11, pp. 1483–1491, 2017.
  • C. Lascu, I. Boldea, and F. Blaabjerg, “A modified direct torque control for induction motor sensorless drive,” IEEE Trans. Ind. Appl., Vol. 36, pp. 122–130, 2000. doi: 10.1109/28.821806
  • F. Khoucha, M. S. Lagoun, A. Kheloui, and M. El Hachemi Benbouzid, “A comparison of symmetrical and asymmetrical three-phase H-bridge multilevel inverter for DTC induction motor drives,” IEEE Trans. Energy Conver., Vol. 26, pp. 64–72, 2011. doi: 10.1109/TEC.2010.2077296
  • S. A. Odhano, R. Bojoi, A. Boglietti, S. G. Rosu, and G. Griva, “Maximum efficiency per torque direct flux vector control of induction motor drives,” IEEE Trans. Ind. Appl., Vol. 51, pp. 4415–4424, 2015. doi: 10.1109/TIA.2015.2448682
  • Y. S. Kumar, and G. Poddar, “Medium-voltage vector control induction motor drive at zero frequency using modular multilevel converter,” IEEE Trans. Ind. Electron., Vol. 65, pp. 125–132, 2018. doi: 10.1109/TIE.2017.2721927
  • C. Lascu, S. Jafarzadeh, M. S. Fadali, and F. Blaabjerg, “Direct torque control with feedback linearization for induction motor drives,” IEEE Trans. Ind. Electron., Vol. 32, pp. 2072–2080, 2017.
  • A. Accetta, F. Alonge, M. Cirrincione, F. D’Ippolito, M. Pucci, R. Rabbeni, and A. Sferlazza, “Robust control for high performance induction motor drives based on partial state-feedback linearization,” IEEE Trans. Ind. Appl., Vol. 55, pp. 490–503, 2019. doi: 10.1109/TIA.2018.2869112
  • A. Accetta, F. Alonge, M. Cirrincione, M. Pucci, and A. Sferlazza, “Feedback linearizing control of induction motor considering magnetic saturation effects,” IEEE Trans. Ind. Appl., Vol. 52, pp. 4843–4854, 2016. doi: 10.1109/TIA.2016.2596710
  • M. Meng, “Study on the workless forces in passivity-based control of induction motors,” in 4th IEEE Conference on Industrial Electronics and Applications, 2009, pp. 1043–1045.
  • L. U. Gokdere, M. A. Simaan, and C. W. Brice, “Passivity-based control of saturated induction motors,” IEEE Trans. Ind. Electron., Vol. 48, pp. 870–872, 2001. doi: 10.1109/41.937423
  • W. J. Wang, and J. Y. Chen, “Passivity-based sliding mode position control for induction motor drives,” IEEE Trans. Energy Conver., Vol. 20, pp. 316–321, 2005. doi: 10.1109/TEC.2004.841504
  • B. L. G. Costa, C. L. Graciola, B. A. Angélico, A. Goedtel, M. F. Castoldi, and W. C. d. A. Pereira, “A practical framework for tuning DTC-SVM drive of three-phase induction motors,” Control. Eng. Pract., Vol. 88, pp. 119–127, 2019. doi: 10.1016/j.conengprac.2019.05.003
  • V. Naik, A. Panda, and S. P. Singh, “A three-level fuzzy-2 DTC of induction motor drive using SVPWM,” IEEE Trans. Ind. Electron., Vol. 63, pp. 1467–1479, 2016. doi: 10.1109/TIE.2015.2504551
  • S. M. Gadoue, D. Giaouris, and J. W. Finch, “Artificial intelligence-based speed control of DTC induction motor drives—a comparative study,” Electr. Power Syst. Res., Vol. 79, pp. 210–219, 2009. doi: 10.1016/j.epsr.2008.05.024
  • A. Berzoy, J. Rengifo, and O. Mohammed, “Fuzzy predictive DTC of induction machines with reduced torque ripple and high-performance operation,” IEEE Trans. Power Electr., Vol. 33, pp. 2580–2587, 2018. doi: 10.1109/TPEL.2017.2690405
  • M. Ouhrouche, R. Errouissi, A. M. Trzynadlowski, K. A. Tehrani, and A. Benzaioua, “A novel predictive direct torque controller for induction motor drives,” IEEE Trans. Ind. Electron., Vol. 63, pp. 5221–5230, 2016.
  • T. N. Mir, B. Singh, and A. H. Bhat, “Speed-sensorless DTC of a matrix converter fed induction motor using an adaptive flux observer,” IETE. J. Res., Vol. 64, pp. 1–11, 2018. doi: 10.1080/03772063.2018.1552206
  • M. Barut, “Bi input-extended Kalman filter based estimation technique for speed-sensorless control of induction motors,” Energy Convers. Manage., Vol. 51, pp. 2032–2040, 2010. doi: 10.1016/j.enconman.2010.02.037
  • Z. Yin, G. Li, Y. Zhang, and J. Liu, “Symmetric-strong-tracking-extended-Kalman-filter-based sensorless control of induction motor drives for modeling error reduction,” IEEE Trans. Ind. Inform., Vol. 15, pp. 650–662, 2019. doi: 10.1109/TII.2018.2810850
  • F. Alonge, F. D'Ippolito, A. Fagiolini, and A. Sferlazza, “Extended complex Kalman filter for sensorless control of an induction motor,” Control. Eng. Pract., Vol. 27, pp. 1–10, 2014. doi: 10.1016/j.conengprac.2014.02.007
  • Z. G. Yin, C. Zhao, Y.-R. Zhong, and J. Liu, “Research on robust performance of speed-sensorless vector control for the induction motor using an interfacing multiple-model extended Kalman filter,” IEEE Trans. Power Electr., Vol. 29, pp. 3011–3019, 2014. doi: 10.1109/TPEL.2013.2272091
  • F. Alonge, T. Cangemi, F. D’Ippolito, A. Fagiolini, and A. Sferlazza, “Convergence analysis of extended Kalman filter for sensorless control of induction motor,” IEEE Trans. Ind. Electron., Vol. 62, pp. 2341–2352, 2015. doi: 10.1109/TIE.2014.2355133
  • M. Comanescu, “Single and double compound manifold sliding mode observers for flux and speed estimation of the induction motor drive,” IET Electr. Power Appl., Vol. 8, pp. 29–38, 2014. doi: 10.1049/iet-epa.2013.0192
  • M. S. Zaky, M. K. Metwaly, H. Z. Azazi, and S. A. Deraz, “A new adaptive SMO for speed estimation of sensorless induction motor drives at zero and very low frequencies,” IEEE Trans. Ind. Electron., Vol. 65, pp. 6901–6911, 2018.
  • X. Zhang, “Sensorless induction motor drive using indirect vector controller and sliding-mode observer for electric vehicles,” IEEE Trans. Veh. Technol., Vol. 62, pp. 3010–3018, 2013. doi: 10.1109/TVT.2013.2251921
  • M. Comanescu, “Design and implementation of a highly robust sensorless sliding mode observer for the flux magnitude of the induction motor,” IEEE Trans. Energy Conver., Vol. 31, pp. 649–657, 2016. doi: 10.1109/TEC.2016.2516951
  • C. Lascu, I. Boldea, and F. Blaabjerg, “A class of speed-sensorless sliding-mode observers for high-performance induction motor drives,” IEEE Trans. Ind. Electron., Vol. 56, pp. 3394–3403, 2009. doi: 10.1109/TIE.2009.2022518
  • J. Cao, G. Li, X. Qi, Q. Ye, Q. Zhang, and Q. Wang, “Sensorless vector control system of induction motor by nonlinear full-order observer,” in 11th Conference on Industrial Electronics and Applications (ICIEA), 2016, pp. 1959–1962.
  • B. Chen, T. Wang, Z. Lu, W. Yao, and K. Lee, “Speed convergence rate-based feedback gains design of adaptive full-order observer in sensorless induction motor drives,” IET Electr. Power Appl., Vol. 8, pp. 13–22, 2014. doi: 10.1049/iet-epa.2013.0210
  • W. Sun, Y. Yu, G. Wang, B. Li, and D. Xu, “Design method of adaptive full order observer with or without estimated flux error in speed estimation algorithm,” IEEE Trans. Power Electr., Vol. 31, pp. 2609–2626, 2016. doi: 10.1109/TPEL.2015.2440373
  • Y. A. Zorgani, Y. Koubaa, and M. Boussak, “MRAS state estimator for speed sensorless ISFOC induction motor drives with Luenberger load torque estimation,” ISA Trans., Vol. 61, pp. 308–317, 2016. doi: 10.1016/j.isatra.2015.12.015
  • N. Bensiali, E. Etien, and N. Benalia, “Convergence analysis of back-EMF MRAS observers used in sensorless control of induction motor drives,” Math. Comput. Simul., Vol. 115, pp. 12–23, 2015. doi: 10.1016/j.matcom.2015.04.002
  • I. Benlaloui, S. Drid, L. Chrifi-Alaoui, and M. Ouriagli, “Implementation of a new MRAS speed sensorless vector control of induction machine,” IEEE Trans. Energy Conver., Vol. 30, pp. 588–595, 2015. doi: 10.1109/TEC.2014.2366473
  • M. S. Zaky, M. K. Metwaly, H. Z. Azazi, and S. A. Deraz, “Performance of a modified stator current based model reference adaptive system observer in sensorless induction motor drives,” Electr. Power Compon. Syst., Vol. 46, pp. 1857–1871, 2018. doi: 10.1080/15325008.2018.1527866
  • D. Giribabu, S. P. Srivastava, and M. K. Pathak, “Modified reference model for rotor flux-based MRAS speed observer using neural network controller,” IETE. J. Res., Vol. 65, pp. 80–95, 2019. doi: 10.1080/03772063.2017.1407267
  • Y. B. Zbede, S. M. Gadoue, and D. J. Atkinson, “Model predictive MRAS estimator for sensorless induction motor drives,” IEEE Trans. Ind. Electron., Vol. 63, pp. 3511–3521, 2016. doi: 10.1109/TIE.2016.2521721
  • A. Mechernene, M. Zerikat, and S. Chekroun, “Adaptive speed observer using artificial neural network for sensorless vector control of induction motor drive,” Automatika, Vol. 53, pp. 263–271, 2012. doi: 10.7305/automatika.53-3.68
  • S. Maiti, V. Verma, C. Chakraborty, and Y. Hori, “An adaptive speed sensorless induction motor drive with artificial neural network for stability enhancement,” IEEE Trans. Ind. Inform., Vol. 8, pp. 757–766, 2012. doi: 10.1109/TII.2012.2210229
  • S. Abedi, S. Buyamin, M. Tousizadeh, and N. A. Rahim, “Sensorless speed estimation of induction motor based on feed-forward neural network algorithm,” in 2013 IEEE Conference on Clean Energy and Technology (CEAT), 2013, pp. 71–75.
  • S. Aouaouda, M. Chadli, and M. Boukhnifer, “Speed sensor fault tolerant controller design for induction motor drive in EV,” Neurocomputing, Vol. 214, pp. 32–43, 2016. doi: 10.1016/j.neucom.2016.06.001
  • Y. Azzoug, A. Menacer, R. Pusca, R. Romary, T. Ameid, and A. Ammar, “Fault tolerant control for speed sensor failure in induction motor drive based on direct torque control and adaptive stator flux observer,” in 2018 International Conference on Applied and Theoretical Electricity (ICATE), 2018, pp. 1–6.
  • M. Bourogaoui, H. B. A. Sethom, and I. S. Belkhodja, “Speed/position sensor fault tolerant control in adjustable speed drives–a review,” ISA Trans., Vol. 64, pp. 269–284, 2016. doi: 10.1016/j.isatra.2016.05.003
  • D. Diallo, M. E. H. Benbouzid, and A. Makouf, “A fault-tolerant control architecture for induction motor drives in automotive applications,” IEEE Trans. Veh. Technol., Vol. 53, pp. 1847–1855, 2004. doi: 10.1109/TVT.2004.833610
  • M. Dybkowski, K. Klimkowski, and T. Orlowska-Kowalska, “Speed sensor fault tolerant direct torque control of induction motor drive,” in 16th International Power Electronics and Motion Control Conference and Exposition, 2014, pp. 679–684.
  • M. Manohar, and S. Das, “Current sensor fault-tolerant control for direct torque control of induction motor drive using flux-linkage observer,” IEEE Trans. Ind. Inform., Vol. 13, pp. 2824–2833, 2017. doi: 10.1109/TII.2017.2714675
  • Y. Yu, Y. Zhao, B. Wang, X. Huang, and D. Xu, “Current sensor fault diagnosis and tolerant control for VSI-based induction motor drives,” IEEE Trans. Power Electr., Vol. 33, pp. 4238–4248, 2018. doi: 10.1109/TPEL.2017.2713482
  • B. Tabbache, N. Rizoug, M. E. H. Benbouzid, and A. Kheloui, “A control reconfiguration strategy for post-sensor FTC in induction motor-based EVs,” IEEE Trans. Veh. Technol., Vol. 62, pp. 965–971, 2013. doi: 10.1109/TVT.2012.2232325
  • Y. Rkhissi-Kammoun, J. Ghommam, M. Boukhnifer, and F. Mnif, “Current sensor fault-tolerant control scheme for induction machine in electric vehicle applications using rise-algebraic estimation approach,” in International Conference on Industrial Technology (ICIT), 2018, pp. 358–363.
  • X.-L. Ge, X.-Y. Feng, B. Gou, and Y.-C. Liu, “Load-current-based current sensor fault diagnosis and tolerant control scheme for traction inverters,” Electron. Lett., Vol. 52, pp. 1717–1719, 2016. doi: 10.1049/el.2015.2610
  • J. A. De Doná, M. M. Seron, and M. E. Romero, “Sensor fault-tolerant vector control of induction motors,” IET Control Theory Applic., Vol. 4, pp. 1707–1724, 2010. doi: 10.1049/iet-cta.2009.0464
  • M. Farhadi, M. T. Fard, M. Abapour, and M. T. Hagh, “DC–AC converter-fed induction motor drive with fault-tolerant capability under open-and short-circuit switch failures,” IEEE Trans. Power Electr., Vol. 33, pp. 1609–1621, 2018. doi: 10.1109/TPEL.2017.2683534
  • R. Maamouri, M. Trabelsi, M. Boussak, and F. M’Sahli, “Fault diagnosis and fault tolerant control of a three-phase VSI supplying sensorless speed controlled induction motor drive,” Electr. Power Compon. Syst., Vol. 46, pp. 2159–2173, 2018. doi: 10.1080/15325008.2018.1534899
  • M. Fathi, M. Zolghadri, S. Ouni, and R. Babaloo, “Post fault vector control of an induction motor fed by a CHB inverter,” in 10th International Power Electronics, Drive Systems and Technologies Conference (PEDSTC), 2019, pp. 149–154.
  • D. Zhou, Y. Li, J. Zhao, F. Wu, and H. Luo, “An embedded closed-loop fault-tolerant control scheme for nonredundant vsi-fed induction motor drives,” IEEE Trans. Power Electr., Vol. 32, pp. 3731–3740, 2017. doi: 10.1109/TPEL.2016.2582834
  • S. S. Refaat, “ANN-based system for inter-turn stator winding fault tolerant DTC for induction motor drives,” in 17th European Conference on Power Electronics and Applications (EPE’15 ECCE-Europe), 2015, pp. 1–7.
  • G. I. Odnokopylov, and A. D. Bragin, “Algorithms of fault tolerant control of induction motor electric drive in phase loss operate mode,” in International Siberian Conference on Control and Communications (SIBCON), 2015, pp. 1–5.
  • M. Tousizadeh, H. S. Che, J. Selvaraj, N. A. Rahim, and B.-T. Ooi, “Fault-tolerant field-oriented control of three-phase induction motor based on unified feedforward method,” IEEE Trans. Power Electr., Vol. 34, pp. 7172–7183, 2019. doi: 10.1109/TPEL.2018.2884759
  • M. N. Uddin, W. Wang, and Z. R. Huang, “Modeling and minimization of speed ripple of a faulty induction motor with broken rotor bars,” IEEE Trans. Ind. Appl., Vol. 46, pp. 2243–2250, 2010. doi: 10.1109/TIA.2010.2070476
  • D. U. Campos-Delgado, D. R. Espinoza-Trejo, and E. Palacios, “Fault-tolerant control in variable speed drives: a survey,” IET Electr. Power Appl., Vol. 2, pp. 121–134, 2008. doi: 10.1049/iet-epa:20070203
  • A. Sayed-Ahmed, and N. A. Demerdash, “Control of open-loop PWM delta-connected motor-drive systems under One phase failure condition,” J Power Electron., Vol. 11, pp. 824–836, 2011. doi: 10.6113/JPE.2011.11.6.824
  • A. Raisemche, M. Boukhnifer, C. Larouci, and D. Diallo, “Two active fault-tolerant control schemes of induction-motor drive in EV or HEV,” IEEE Trans. Veh. Technol., Vol. 63, pp. 19–29, 2014. doi: 10.1109/TVT.2013.2272182
  • A. Saleh, A. Shaltout, and M. Pacas, “Fault tolerant field oriented control of the induction motor for loss of one inverter phase,” in IECON 32nd Annual Conference on IEEE Industrial Electronics, 2006, pp. 817–822.
  • D. Kastha, and B. K. Bose, “Fault mode single-phase operation of a variable frequency induction motor drive and improvement of pulsating torque characteristics,” IEEE Trans. Ind. Electron., Vol. 41, pp. 426–433, 1994. doi: 10.1109/41.303793
  • Y. Zhao, and T. A. Lipo, “An approach to modeling and field-oriented control of a three phase induction machine with structural imbalance,” in Proceedings of Applied Power Electronics Conference (APEC’96), Vol. 1, 1996, pp. 380–386.
  • H. Niemann, and J. Stoustrup, “Passive fault tolerant control of a double inverted pendulum—a case study,” Control. Eng. Pract., Vol. 13, pp. 1047–1059, 2005. doi: 10.1016/j.conengprac.2004.11.002
  • R. Oubellil, and M. Boukhnifer, “Passive fault tolerant control design of energy management system for electric vehicle,” in 23rd International Symposium on Industrial Electronics (ISIE), 2014, pp. 1402–1408.
  • M. Benosman, and K. Y. Lum, “Passive actuators’ fault-tolerant control for affine nonlinear systems,” IEEE Trans. Contr. Syst. T., Vol. 18, pp. 152–163, 2010. doi: 10.1109/TCST.2008.2009641
  • A. Sayed-Ahmed, and N. A. Demerdash, “Fault-tolerant operation of delta-connected scalar-and vector-controlled AC motor drives,” IEEE Trans. Power Electr., Vol. 27, pp. 3041–3049, 2012. doi: 10.1109/TPEL.2011.2176556
  • M. Jannati, N. R. Nik Idris, and M. J. Abdul Aziz, “Vector control of star-connected 3-phase induction motor drives under open-phase fault based on rotor flux field-oriented control,” Electr. Power Compon. Syst., Vol. 44, pp. 2325–2337, 2016. doi: 10.1080/15325008.2016.1222026
  • X. He, Z. Wang, L. Qin, and D. Zhou, “Active fault-tolerant control for an internet-based networked three-tank system,” IEEE Trans. Contr. Syst. T., Vol. 24, pp. 2150–2157, 2016. doi: 10.1109/TCST.2016.2524595
  • P. Cheng, Z. Gao, Z. Zhou, M. Qian, and J. Lin, “Active FTC approach design for a class of nonlinear flight control systems with actuator faults,” in 29th Chinese Control And Decision Conference (CCDC), 2017, pp. 6474–6479.
  • M. Benosman, Passive Fault Tolerant Control. Robust Control Theory Appl., Mitsubishi Electric Research Laboratories. Cambridge, MA, 2011.
  • Y. Zhang, and J. Jiang, “Bibliographical review on reconfigurable fault-tolerant control systems,” Annu. Rev. Control., Vol. 32, pp. 229–252, 2008. doi: 10.1016/j.arcontrol.2008.03.008
  • I. Hwang, S. Kim, Y. Kim, and C. E. Seah, “A survey of fault detection, isolation, and reconfiguration methods,” IEEE Trans. Contr. Syst. T., Vol. 18, pp. 636–653, 2010. doi: 10.1109/TCST.2009.2026285
  • M. Salehifar, and M. Moreno-Equilaz, “Fault diagnosis and fault-tolerant finite control set-model predictive control of a multiphase voltage-source inverter supplying BLDC motor,” ISA Trans., Vol. 60, pp. 143–155, 2016. doi: 10.1016/j.isatra.2015.10.007
  • B. Pourbabaee, N. Meskin, and K. Khorasani, “Sensor fault detection, isolation, and identification using multiple-model-based hybrid Kalman filter for gas turbine engines,” IEEE Trans. Contr. Syst. T., Vol. 24, pp. 1184–1200, 2016. doi: 10.1109/TCST.2015.2480003
  • C. Chakraborty, and V. Verma, “Speed and current sensor fault detection and isolation technique for induction motor drive using axes transformation,” IEEE Trans. Ind. Electron., Vol. 62, pp. 1943–1954, 2015. doi: 10.1109/TIE.2014.2345337
  • C. Wu, C. Guo, Z. Xie, F. Ni, and H. Liu, “A signal-based fault detection and tolerance control method of current sensor for PMSM drive,” IEEE Trans. Ind. Electron., Vol. 65, pp. 9646–9657, 2018. doi: 10.1109/TIE.2018.2813991
  • N. M. Freire, J. O. Estima, and A. J. M. Cardoso, “A new approach for current sensor fault diagnosis in PMSG drives for wind energy conversion systems,” IEEE Trans. Ind. Appl., Vol. 50, pp. 1206–1214, 2014. doi: 10.1109/TIA.2013.2271992
  • H. Chen, B. Jiang, and N. Lu, “An improved incipient fault detection method based on Kullback-Leibler divergence,” ISA Trans., Vol. 79, pp. 127–136, 2018. doi: 10.1016/j.isatra.2018.05.007
  • H. Chen, B. Jiang, W. Chen, and H. Yi, “Data-driven detection and diagnosis of incipient faults in electrical drives of high-speed trains,” IEEE Trans. Ind. Electron., Vol. 66, pp. 4716–4725, 2019. doi: 10.1109/TIE.2018.2863191
  • H. Chen, B. Jiang, S. X. Ding, N. Lu, and W. Chen, “Probability-relevant incipient fault detection and diagnosis methodology with applications to electric drive systems,” IEEE Trans. Contr. Syst. T., Vol. 27, 1–8, 2018.
  • H. Chen, B. Jiang, N. Lu, and Z. Mao, “Deep PCA based real-time incipient fault detection and diagnosis methodology for electrical drive in high-speed trains,” IEEE Trans. Veh. Technol., Vol. 67, pp. 4819–4830, 2018. doi: 10.1109/TVT.2018.2818538
  • H. Chen, B. Jiang, and N. Lu, “A newly robust fault detection and diagnosis method for high-speed trains,” IEEE Trans. Intell. Transp., Vol. 20, pp. 2198–2208, 2019. doi: 10.1109/TITS.2018.2865410
  • H. Chen, and B. Jiang, “A review of fault detection and diagnosis for the traction system in high-speed trains,” IEEE Trans. Intell. Transp., Vol. 21, pp. 1–16, 2019.
  • R. Maamouri, M. Trabelsi, M. Boussak, and F. M’Sahli, “Mixed model-based and signal-based approach for open-switches fault diagnostic in sensorless speed vector controlled induction motor drive using sliding mode observer,” IET Power Electron., Vol. 12, pp. 1149–1159, 2019. doi: 10.1049/iet-pel.2018.5131
  • S. Yin, S. X. Ding, X. Xie, and H. Luo, “A review on basic data-driven approaches for industrial process monitoring,” IEEE Trans. Ind. Electron., Vol. 61, pp. 6418–6428, 2014. doi: 10.1109/TIE.2014.2301773
  • C. M. F. S. Reza, M. D. Islam, and S. Mekhilef, “A review of reliable and energy efficient direct torque controlled induction motor drives,” J. Renew. Sustain. Ener. Rev., Vol. 37, pp. 919–932, 2014. doi: 10.1016/j.rser.2014.05.067
  • I. Al-Bahadly, “Energy saving with variable speed drives in industry applications,” in proceedings of the 2007 WSEAS Int. Conference on Circuits, Systems, Signal and Telecommunications, Gold Coast, 2007, pp. 53–58.
  • I. M. Alsofyani, and N. R. N. Idris, “A review on sensorless techniques for sustainable reliablity and efficient variable frequency drives of induction motors,” J. Renew. Sustain. Ener. Rev., Vol. 24, pp. 111–121, 2013. doi: 10.1016/j.rser.2013.03.051
  • R. Abebe, M. Di Nardo, D. Gerada, G. L. Calzo, L. Papini, and C. Gerada, “High speed drives review: machines, converters and applications,” in 42nd Annual Conference of the IEEE Industrial Electronics Society, 2016, pp. 1675–1679.
  • T. M. Jahns, and H. Dai, “The past, present, and future of power electronics integration technology in motor drives,” CPSS Trans. Power Electron. Appl., Vol. 2, pp. 197–216, 2017. doi: 10.24295/CPSSTPEA.2017.00019
  • M. Jannati, N. R. N. Idris, and M. J. A. Aziz, “Performance evaluation of the field-oriented control of star-connected 3-phase Induction motor drives under stator winding open-circuit faults,” J Power Electron., Vol. 16, pp. 982–993, 2016. doi: 10.6113/JPE.2016.16.3.982
  • H. Henao, et al., “Trends in fault Diagnosis for electrical machines: a review of diagnostic techniques,” IEEE Ind. Electron. Mag., Vol. 8, pp. 31–42, 2014. doi: 10.1109/MIE.2013.2287651
  • A. Bellini, F. Filippetti, C. Tassoni, and G.-A. Capolino, “Advances in diagnostic techniques for induction machines,” IEEE Trans. Ind. Electron., Vol. 55, pp. 4109–4126, 2008. doi: 10.1109/TIE.2008.2007527
  • Motor Reliability Working Group, “Report of large motor reliability survey of industrial and commercial installations, part I,” IEEE Trans. Ind. Appl., Vol. 1, pp. 865–872, 1985.
  • A. Sayed-Ahmed, B. Mirafzal, and N. A. O. Demerdash, “Fault-tolerant technique for Δ-connected AC-motor drives,” IEEE Trans. Energy Conver., Vol. 26, pp. 646–653, 2011. doi: 10.1109/TEC.2010.2088401
  • T. H. Liu, J.-R. Fu, and T. A. Lipo, “A strategy for improving reliability of field-oriented controlled induction motor drives,” IEEE Trans. Ind. Appl., Vol. 29, pp. 910–918, 1993. doi: 10.1109/28.245714
  • B. A. Welchko, T. A. Lipo, T. M. Jahns, and S. E. Schulz, “Fault tolerant three-phase AC motor drive topologies: a comparison of features, cost, and limitations,” IEEE Trans. Power Electr., Vol. 19, pp. 1108–1116, 2004. doi: 10.1109/TPEL.2004.830074
  • A. Gaeta, G. Scelba, and A. Consoli, “Modeling and control of three-phase PMSMs under open-phase fault,” IEEE Trans. Ind. Appl., Vol. 49, pp. 74–83, 2013. doi: 10.1109/TIA.2012.2228614
  • R. L. de Araujo Ribeiro, C. B. Jacobina, E. R. C. da Silva, and A. M. N. Lima, “Fault-tolerant voltage-fed PWM inverter AC motor drive systems,” IEEE Trans. Ind. Electron., Vol. 51, pp. 439–446, 2004. doi: 10.1109/TIE.2004.825284
  • M. Beltrao de Rossiter Correa, C. Brandao Jacobina, E. R. Cabral da Silva, and A. M. Nogueira Lima, “An induction motor drive system with improved fault tolerance,” IEEE Trans. Ind. Appl., Vol. 37, pp. 873–879, 2001. doi: 10.1109/28.924770
  • M. Naidu, S. Gopalakrishnan, and T. W. Nehl, “Fault tolerant permanent magnet motor drive topologies for automotive x-by-wire systems,” in Industry Applications Society Annual Meeting, 2008, pp. 1–8.
  • R. L. A. Ribeiro, C. B. Jacobina, E. R. C. Da Silva, and A. M. N. Lima, “A fault tolerant induction motor drive system by using a compensation strategy on the PWM-VSI topology,” in 32nd Annual Power Electronics Specialists Conference (IEEE Cat. No. 01CH37230), Vol. 2, 2001, pp. 1191–1196.
  • J. Rodríguez, P. W. Hammond, J. Pontt, R. Musalem, P. Lezana, and M. J. Escobar, “Operation of a medium-voltage drive under faulty conditions,” IEEE Trans. Ind. Electron., Vol. 52, pp. 1080–1085, 2005. doi: 10.1109/TIE.2005.851645
  • D. Qin, X. Luo, and T. A. Lipo, “Reluctance motor control for fault-tolerant capability,” in International Electric Machines and Drives Conference Record, 1997, pp. WA1–1.
  • S. Kwak, and H. A. Toliyat, “An approach to fault-tolerant three-phase matrix converter drives,” IEEE Trans. Energy Conver., Vol. 22, pp. 855–863, 2007. doi: 10.1109/TEC.2006.888018
  • S. Khwan-on, L. de Lillo, L. Empringham, and P. Wheeler, “Fault-tolerant matrix converter motor drives with fault detection of open switch faults,” IEEE Trans. Ind. Electron., Vol. 59, pp. 257–268, 2012. doi: 10.1109/TIE.2011.2162711
  • S. Kwak, and H. A. Toliyat, “Fault-tolerant topologies and switching function algorithms for three-phase matrix converter based AC motor drives against open and short phase failures,” in International Electric Machines & Drives Conference, Vol. 1, 2007, pp. 886–891.
  • M. Suetake, I. N. da Silva, and A. Goedtel, “Embedded DSP-based compact fuzzy system and its application for induction-motor $ V/f $ speed control,” IEEE Trans. Ind. Electron., Vol. 58, pp. 750–760, 2011. doi: 10.1109/TIE.2010.2047822
  • T. H. dos Santos, A. Goedtel, S. A. O. da Silva, and M. Suetake, “Scalar control of an induction motor using a neural sensorless technique,” Electr. Power Syst. Res., Vol. 108, pp. 322–330, 2014. doi: 10.1016/j.epsr.2013.11.020
  • S. V. Ustun, and M. Demirtas, “Optimal tuning of PI coefficients by using fuzzy-genetic for V/f controlled induction motor,” Expert. Syst. Appl., Vol. 34, pp. 2714–2720, 2008. doi: 10.1016/j.eswa.2007.05.029
  • N. M. Abdel-Rahim, and A. Shaltout, “An unsymmetrical two-phase induction motor drive with slip-frequency control,” IEEE Trans. Energy Conver., Vol. 24, pp. 608–616, 2009. doi: 10.1109/TEC.2009.2026599
  • P. Vas. Sensorless vector and direct torque control. Oxford: Oxford University Press, 1998.
  • M. Demirtas, “DSP-based sliding mode speed control of induction motor using neuro-genetic structure,” Expert. Syst. Appl., Vol. 36, pp. 5533–5540, 2009. doi: 10.1016/j.eswa.2008.06.086
  • M. Jannati, and N. R. N. Idris, “Vector control of unbalanced 3-phase IM using forward and backward components,” Turk J Electr Eng Co, Vol. 25, pp. 1358–1374, 2017. doi: 10.3906/elk-1404-545
  • M. Jannati, et al, “Fault-tolerant control of 3-phase IM drive (speed-sensor fault and open-phase fault),” in 2015 IEEE Conference on Energy Conversion (CENCON), 2015, pp. 384–389.
  • M. Jannati, T. Sutikno, N. R. Nik Idris, and J. A. Aziz, “High performance vector control of 3-phase IM drives under open-phase fault based on EKF for rotor flux estimation,” Int. J. Elec. Comput. En., Vol. 6, pp. 2088–8708, 2016.
  • M. Jannati, N. R. Nik Idris, J. A. Aziz, and T. Sutikno, “A novel method for vector control of faulty three-phase IM drives based on FOC method,” Int. J. Elec. Comput. En., Vol. 5, pp. 1284–1291, 2015.
  • A. Saleh, A. Shaltout, and M. Pacas, “Fault tolerant field oriented control of induction motor for loss of one inverter phase with re-starting capability,” in 2007 IEEE International Symposium on Industrial Electronics, 2007, pp. 1340–1345.
  • H. B. Azza, M. Jemli, M. Boussak, and M. Gossa, “High performance sensorless speed vector control of SPIM drives with on-line stator resistance estimation,” Simul. Model. Pract. Theory., Vol. 19, pp. 271–282, 2011. doi: 10.1016/j.simpat.2010.06.012
  • H. B. Azza, N. Zaidi, M. Jemli, and M. Boussak, “Development and experimental evaluation of a sensorless speed control of SPIM using adaptive sliding mode-MRAS strategy,” IEEE. J. Emerg. Sel. Top. Power. Electron., Vol. 2, pp. 319–328, 2014. doi: 10.1109/JESTPE.2014.2299893
  • R. Z. Azzolin, T. A. Bernardes, R. P. Vieira, C. C. Gastaldini, and H. A. Gründling, “Decoupling and sensorless vector control scheme for single-phase induction motor drives,” in 38th Annual Conference on IEEE Industrial Electronics Society, 2012, pp. 1713–1719.
  • A. B. Nanda, and T. K. Bhattacharya, “High performance vector control of single phase induction motor drives based on rotor MEMF,” in International Conference on Energy, Automation and Signal, 2011, pp. 1–5.
  • S. Reicy, and S. Vaez-Zadeh, “Vector control of single-phase induction machine with maximum torque operation,” in Proceedings of the IEEE International Symposium on Industrial Electronics (ISIE), Vol. 3, 2005, pp. 923–928.
  • M. Jannati, N. R. N. Idris, and M. J. A. Aziz, “A new method for RFOC of Induction Motor under open-phase fault,” in 39th Annual Conference of the IEEE Industrial Electronics Society, 2013, pp. 2530–2535.
  • R. D. F. Campos, J. de Oliveira, L. C. d. S. Marques, A. Nied, and S. I. Sele, “SVPWM-DTC strategy for single-phase induction motor control,” in International Electric Machines & Drives Conference, Vol. 2, 2007, pp. 1220–1225.
  • R. D. F. Campos, L. F. Pinto, J. de Oliveira, and A. Nied, “Single-phase induction motor control based on dtc strategies,” in 2007 IEEE International Symposium on Industrial Electronics, 2007, pp. 1068–1073.
  • M. Jannati, A. Monadi, N. R. N. Idris, and M. J. Abdul Aziz, “Experimental evaluation of FOC of 3-phase IM under open-phase fault,” Int. J. Electron., Vol. 104, pp. 1675–1688, 2017. doi: 10.1080/00207217.2017.1321144
  • M. B. de Rossiter Corrêa, C. B. Jacobina, A. M. N. Lima, and E. R. C. da Silva, “Rotor-flux-oriented control of a single-phase induction motor drive,” IEEE Trans. Ind. Electron., Vol. 47, pp. 832–841, 2000. doi: 10.1109/41.857963
  • M. B. de Rossiter Corrêa, C. B. Jacobina, A. M. N. Lima, and E. R. C. da Silva, “A three-leg voltage source inverter for two-phase AC motor drive systems,” IEEE Trans. Power Electr., Vol. 17, pp. 517–523, 2002. doi: 10.1109/TPEL.2002.800984
  • M. B. de Rossiter Corrêa, C. B. Jacobina, E. R. C. da Silva, and A. M. N. Lima, “Vector control strategies for single-phase induction motor drive systems,” IEEE Trans. Ind. Electron., Vol. 51, pp. 1073–1080, 2004. doi: 10.1109/TIE.2004.834973
  • M. Jemli, H. Ben Azza, and M. Gossa, “Real-time implementation of IRFOC for single-phase induction motor drive using dSpace DS 1104 control board,” Simul. Model. Pract. Theory., Vol. 17, pp. 1071–1080, 2009. doi: 10.1016/j.simpat.2009.03.005
  • M. Jemli, H. B. Azza, M. Boussak, and M. Gossa, “Sensorless indirect stator field orientation speed control for single-phase induction motor drive,” IEEE Trans. Power Electr., Vol. 24, pp. 1618–1627, 2009. doi: 10.1109/TPEL.2009.2014867
  • A. M. Amin, M. I. El Korfally, A. A. Sayed, and O. T. M. Hegazy, “Efficiency optimization of two-asymmetrical-winding induction motor based on swarm intelligence,” IEEE Trans. Energy Conver., Vol. 24, pp. 12–20, 2009. doi: 10.1109/TEC.2008.2011831
  • F. A. Neves, E. B. S. Filho, J. M. S. Cruz, R. P. Landim, Z. D. Lins, and A. G. H. Accioly, “Single-phase induction motor drives with direct torque control,” in 28th Annual Conference of the Industrial electronics Society, Vol. 1, 2002, pp. 241–246.
  • D. Kastha, and B. K. Bose, “On-line search based pulsating torque compensation of a fault mode single-phase variable frequency induction motor drive,” IEEE Trans. Ind. Appl., Vol. 31, pp. 802–811, 1995. doi: 10.1109/28.395290

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.