273
Views
8
CrossRef citations to date
0
Altmetric
Articles

A Dual-Band Zero-Index Metamaterial Superstrate for Concurrent Antenna Gain Enhancement at 2.4 and 3.5 GHz

, &

References

  • N. Engheta and R. W. Ziolkowski. Metamaterials: Physics and Engineering Explorations. Piscataway, NJ: Wiley, 2006.
  • F. Capolino. Applications of Metamaterials. Boca Raton, FL: CRC Press, 2009.
  • Y. G. Ma, P. Wang, X. Chen, and C. K. Ong, “Near-field plane-wave-like beam emitting antenna fabricated by anisotropic metamaterial,” Appl. Phys. Lett., Vol. 94, pp. 0441071–3, 2009.
  • H. Zhou, Z. Pei, S. Qu, S. Zhang, J. Wang, Z. Duan, H. Ma, and Z. Xu, “A novel high-directivity microstrip patch antenna based on zero-index metamaterial,” IEEE Antennas Wirel. Propag. Lett., Vol. 8, pp. 538–41, 2009. doi: 10.1109/LAWP.2009.2018710
  • J. Ju, D. Kim, W. J. Lee, and J. I. Choi, “Wideband high gain antenna using metamaterial superstrate with the zero refractive index,” Microw. Opt. Technol. Lett., Vol. 51, pp. 1973–6, 2009. doi: 10.1002/mop.24469
  • J. P. Turpin, Q. Wu, D. H. Werner, B. Martin, M. Bray, and E. Lier, “Low cost and broadband dual-polarization metamaterial lens for directivity enhancement,” IEEE Trans. Antennas Propag., Vol. 60, pp. 5717–26, 2012. doi: 10.1109/TAP.2012.2214013
  • A. Bakhtiari, “Investigation of enhanced gain Miniaturized patch antenna using near zero index metamaterial structure characteristics,” IETE. J. Res., Vol. 65, pp. 1–8, 2019. doi: 10.1080/03772063.2019.1644973
  • Y. Liu, X. Guo, S. Gu, and X. Zhao, “Zero index metamaterial for designing high-gain patch antenna,” Int. J. Antennas. Propag., Vol. 2013, pp. 1–2, 2013.
  • M. Sun, N. C. Zhi, and Q. Xianming, “Gain enhancement of 60-GHz antipodal tapered slot antenna using zero-index metamaterial,” IEEE Trans. Antennas Propag., Vol. 61, pp. 1741–6, 2013. doi: 10.1109/TAP.2012.2237154
  • D. Li, Z. Szabó, X. Qing, E. P. Li, and Z. N. Chen, “A high gain antenna with an optimized metamaterial inspired superstrate,” IEEE Trans. Antennas Propag., Vol. 60, pp. 6018–23, 2012. doi: 10.1109/TAP.2012.2213231
  • Z. H. Jiang, Q. Wu, D. E. Brocker, P. E. Sieber, and D. H. Werner, “A low-profile high-gain substrate-integrated waveguide slot antenna enabled by an ultrathin anisotropic zero-index metamaterial coating,” IEEE Trans. Antennas Propag., Vol. 62, pp. 1173–84, 2014. doi: 10.1109/TAP.2013.2294354
  • R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E, Vol. 70, pp. 0466081–12, 2004.
  • S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett., Vol. 89, pp. 2139021–4, 2002. doi: 10.1103/PhysRevLett.89.213902
  • G. Lovat, P. Burghignoli, F. Capolino, D. R. Jackson, and D. R. Wilton, “Analysis of directive radiation from a line source in a metamaterial slab with low permittivity,” IEEE Trans. Antennas Propag., Vol. 54, no. 3, pp. 1017–30, 2006. doi: 10.1109/TAP.2006.869925
  • B. Zhou, and J. C. Tie, “Directivity enhancement to Vivaldi antennas using compactly anisotropic zero-index metamaterials,” IEEE Antennas Wirel. Propag. Lett., Vol. 10, pp. 326–9, 2011. doi: 10.1109/LAWP.2011.2142170
  • Y. He, N. Ding, L. Zhang, W. Zhang, and B. Du, “Short-length and high-aperture-efficiency horn antenna using low-loss bulk anisotropic metamaterial,” IEEE Antennas Wirel. Propag. Lett., Vol. 14, pp. 1642–5, 2015. doi: 10.1109/LAWP.2015.2416005
  • Z. B. Weng, Y. Song, Y. C. Jiao, and F. S. Zhang, “A directive dual band and dual polarized antenna with zero index metamaterial,” Microw. Opt. Technol. Lett., Vol. 50, pp. 2902–4, 2008. doi: 10.1002/mop.23855
  • Z. Haider, M. U. Khan, and H. M. Cheema, “A dual-band metamaterial superstrate for antenna gain enhancement,” in 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Boston, MA, 2018, pp. 1017–8.
  • E. Ekmekci, K. Topalli, T. Akin, and G. Turhan-Sayan, “A tunable multi-band metamaterial design using micro-split SRR structures,” Opt. Express, Vol. 17, pp. 16046–58, 2009. doi: 10.1364/OE.17.016046
  • H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys., Vol. 110, p. 014909, 2011. doi: 10.1063/1.3608246
  • T. D. Karamanos, I. D. Alexandros, and V. K. Nikolaos, “Compact double-negative metamaterials based on electric and magnetic resonators,” IEEE Antennas Wirel. Propag. Lett., Vol. 11, pp. 480–3, 2012. doi: 10.1109/LAWP.2012.2197170
  • Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, N. M. Jokerst, and S. A. Cummer, “A dual-resonant terahertz metamaterial based on single-particle electric-field-coupled resonators,” Appl. Phys. Lett., Vol. 93, p. 191110, 2008. doi: 10.1063/1.3026171
  • A. Erentok, P. L. Luljak, and R. W. Ziolkowski, “Characterization of a volumetric metamaterial realization of an artificial magnetic conductor for antenna applications,” IEEE Trans. Antennas Propag., Vol. 53, pp. 160–72, 2005. doi: 10.1109/TAP.2004.840534
  • F. Bilotti, T. Alessandro, and V. Lucio, “Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples,” IEEE Trans. Antennas Propag., Vol. 55, pp. 2258–67, 2007. doi: 10.1109/TAP.2007.901950
  • N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett., Vol. 84, pp. 2943–5, 2004. doi: 10.1063/1.1695439
  • Z. Szabó, G. H. Park, R. Hedge, and E. P. Li, “A unique extraction of metamaterial parameters based on Kramers-Kronig relationship,” IEEE Trans. Microwave Theory Tech., Vol. 58, pp. 2646–53, 2010. doi: 10.1109/TMTT.2010.2065310
  • T. Koschny, P. Markoš, D. R. Smith, and C. M. Soukoulis, “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E, Vol. 68, p. 065602, 2003. doi: 10.1103/PhysRevE.68.065602
  • A. Dadgarpour, A. A. Kishk, and T. A. Denidni, “Gain enhancement of planar antenna enabled by array of split-ring resonators,” IEEE Trans. Antennas Propag., Vol. 64, pp. 3682–7, 2016. doi: 10.1109/TAP.2016.2565741
  • M. E. De Cos, and F. Las-Heras, “Dual-band uniplanar CPW-fed monopole/EBG combination with bandwidth enhancement,” IEEE Antennas Wirel. Propag. Lett., Vol. 11, pp. 365–8, 2012. doi: 10.1109/LAWP.2012.2192493
  • Z. Wu, L. Li, X. Chen, and K. Li, “Dual-band antenna integrating with rectangular mushroom-like superstrate for WLAN applications,” IEEE Antennas Wirel. Propag. Lett., Vol. 15, pp. 1269–72, 2016. doi: 10.1109/LAWP.2015.2504558
  • Y. Sun, Z. N. Chen, Y. Zhang, H. Chen, and T. S. See, “Subwavelength substrate-integrated Fabry-Pérot cavity antennas using artificial magnetic conductor,” IEEE Trans. Antennas Propag., Vol. 60, pp. 30–5, 2012. doi: 10.1109/TAP.2011.2167902
  • B. Zhang, P. Yao, and J. Duan, “Gain-enhanced antenna backed with the fractal artificial magnetic conductor,” IET Microw. Antennas Propag., Vol. 12, no. 9, pp. 1457–60, 2018. doi: 10.1049/iet-map.2017.1130
  • U. Chakraborty, A. K. Biswas, S. Maity, B. Roy, and S. Roy, “Dielectric resonator array antenna for triple band WLAN applications with enhanced gain,” Int. J. RF Microwave Comput. Aided Eng., Vol. 29, no. 2, p. e21529, 2019. doi: 10.1002/mmce.21529
  • K. K. Naik, G. Dattatreya, R. P. Chaitanya, R. Palla, and S. S. Rani, “Enhancement of gain with corrugated Y-shaped patch antenna for triple-band applications,” Int. J. RF Microwave Comput. Aided Eng., Vol. 29, no. 3, p. e21624, 2019. doi: 10.1002/mmce.21624

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.