111
Views
12
CrossRef citations to date
0
Altmetric
Articles

An Intelligent Genetic Fuzzy Classifier for Transformer Faults

ORCID Icon, ORCID Icon & ORCID Icon

References

  • IEEE Guide for the Interpretation of Gases Generated in Oil-immersed Transformers, ANSI/IEEE std. C57.104, 1991. DOI: 10.1109/IEEESTD.1992.106973.
  • IEC Guide for the Interpretation of Dissolved and Free Gases Analysis, IEC std. IEC/CEI 60599, 2007.
  • J. Faiz and M. Soleimani, “Dissolved gas analysis evaluation in electric power transformers using conventional methods – A review,” IEEE Trans. Dielectr. Electr. Insul., Vol. 24, no. 2, pp. 1239–48, Apr. 2017. doi: 10.1109/TDEI.2017.005959
  • F. Zakaria, D. Johari, and I. Musirin, “Optimized artificial neural network for the detection of incipient faults in power transformer,” IEEE Int. Power Eng. Optim. Conf., Vol. 25, no. 5, 635–40, 2014.
  • H. A. Illias, X. R. Chai, and A. H. Abu Bakar, “Hybrid modified evolutionary particle swarm optimisation-time varying acceleration coefficient-artificial neural network for power transformer fault diagnosis,” Measurement, Vol. 90, pp. 94–102, 2016. doi: 10.1016/j.measurement.2016.04.052
  • H. Zheng, Y. Zhang, J. Liu, H. Wei, J. Zhao, and R. Liao, “A novel model based on wavelet LS-SVM integrated improved PSO algorithm for forecasting of dissolved gas contents in power transformers,” Electr. Power Syst. Res., Vol. 155, pp. 196–205, 2018. doi: 10.1016/j.epsr.2017.10.010
  • S. A. Khan, M. D. Equbal, and T. Islam, “A comprehensive comparative study of DGA based transformer fault diagnosis using fuzzy logic and ANFIS models,” IEEE Trans. Dielectr. Electr. Insul., Vol. 22, no. 1, pp. 590–6, Feb. 2015. doi: 10.1109/TDEI.2014.004478
  • H. Malik, and S. Mishra, “Application of gene expression programming (GEP) in power transformers fault diagnosis using DGA,” IEEE Trans. Ind. Appl., Vol. 52, no. 6, pp. 4556–65, 2016. doi: 10.1109/TIA.2016.2598677
  • C. Echeverria, F. Pahlevani, and V. Sahajwalla, “Mechanical particle size reduction methods as potential interfacial optimization alternative for a low-carbon particulate reinforced marine bio-composite”, J. Cleaner Prod., Vol. 221, pp. 509–25, June 2019. doi: 10.1016/j.jclepro.2019.02.265
  • P. Mars. Learning Algorithms: Theory and Applications in Signal Processing, Control and Communications. CRC Press, 2018.
  • D. Silver, et al., “Mastering the game of go with deep neural networks and tree search,” Nature, Vol. 529, no. 7587, pp. 484–9, 2016. doi: 10.1038/nature16961
  • D. Hein, A. Hentschel, T. Runkler, and S. Udluft, “Particle swarm optimization for generating interpretable fuzzy reinforcement learning policies,” Eng. Appl. Artif. Intell., Vol. 65, pp. 87–98, Oct. 2017. doi: 10.1016/j.engappai.2017.07.005
  • J. Jiang, R. Chen, M. Chen, W. Wang, and C. Zhang, “Dynamic fault prediction of power transformers based on hidden Markov model of dissolved gases analysis,” IEEE Trans. Power Delivery, Vol. 34, no. 4, pp. 1393–400, Aug. 2019. DOI: 10.1109/TPWRD.2019.2900543.
  • J. I. Aizpurua, B. G. Stewart, S. D. J. McArthur, B. Lambert, J. G. Cross, and V. M. Catterson, “Improved power transformer condition monitoring under uncertainty through soft computing and probabilistic health index,” Appl. Soft. Comput., 2019. DOI: 10.1016/j.asoc.2019.105530.
  • K. Chatterjee, S. Dawn, V. K. Jadoun, and R. K. Jarial, “Novel prediction-reliability based graphical DGA technique using multi-layer perceptron network & gas ratio combination algorithm,” IET Sci. Meas. Technol., Vol. 13, no. 6, pp. 836–42, 2019. DOI: 10.1049/iet-smt.2018.5397.
  • E. Li, L. Wang, and B. Song, “Fault diagnosis of power transformers with membership degree,” IEEE. Access., Vol. 7, pp. 28791–8, 2019. DOI: 10.1109/ACCESS.2019.2902299.
  • O. E. Gouda, S. H. El-Hoshy, and H. T. Hassan, “Condition assessment of power transformers based on dissolved gas analysis,” IET. Gener. Transm. Distrib., Vol. 13, no. 12, pp. 2299–310, Jun. 2019. DOI: 10.1049/iet-gtd.2018.6168.
  • S. A. Wani, D. Gupta, M. U. Farooque, and S. A. Khan, “Multiple incipient fault classification approach for enhancing the accuracy of dissolved gas analysis (DGA),” IET Sci. Meas. Technol., Vol. 13, no. 7, pp. 959–67, 2019. DOI: 10.1049/iet-smt.2018.5135.
  • V. Tra, B. Duong, and J. Kim, “Improving diagnostic performance of a power transformer using an adaptive over-sampling method for imbalanced data,” IEEE Trans. Dielectr. Electr. Insul., Vol. 26, no. 4, pp. 1325–33, Aug. 2019. DOI: 10.1109/TDEI.2019.008034.
  • X. Yang, W. Chen, A. Li, C. Yang, Z. Xie, and H. Dong, “BA-PNN-based methods for power transformer fault diagnosis,” Adv. Eng. Inf., Vol. 39, pp. 178–85, 2019. DOI: 10.1016/j.aei.2019.01.001.
  • R. Sharma and M. Gopal, “Synergizing reinforcement learning, and game theory – A new direction for control,” Appl. Soft Comput., J., Vol. 10, no. 3, pp. 675–88, Jun. 2010. doi: 10.1016/j.asoc.2009.10.020
  • X. Hao and S. Cai-xin, “Artificial immune network classification algorithm for fault diagnosis of power transformer,” IEEE Trans. Power Delivery, Vol. 22, no. 2, pp. 930–5, 2007. DOI: 10.1109/TPWRD.2007.893182.
  • L. V. Ganyun, C. Haozhong, Z. Haibao, and D. Lixin, “Fault diagnosis of power transformer based on multi-layer SVM classifier,” Electr. Power Syst. Res., Vol. 74, pp. 1–7, 2005. DOI: 10.1016/j.epsr.2004.07.008.
  • R. Naresh, V. Sharma, and M. Vashisth, “An integrated neural fuzzy approach for fault diagnosis of transformers,” IEEE Trans. Power Delivery, Vol. 23, no. 4, pp. 2017–24, 2008. DOI: 10.1109/TPWRD.2008.2002652.
  • W. H. Tang, J. Y. Goulermas, Q. H. Wu, Z. J. Richardson, and J. Fitch, “A probabilistic classifier for transformer dissolved gas analysis with a particle swarm optimizer,” IEEE Trans. Power Delivery, Vol. 23, no. 2, pp. 751–9, 2008. DOI: 10.1109/TPWRD.2008.915812.
  • N. Yadaiah and N. Ravi, “Internal fault detection techniques for power transformers,” Appl. Soft. Comput., Vol. 11, pp. 5259–69, 2011. DOI: 10.1016/j.asoc.2011.05.034.
  • V. Duraisamy, N. Devarajan, D. Somasundareswari, A. A. M. Vasanth, and S. N. Sivanandam, “Neuro fuzzy schemes for fault detection in power transformer,” Appl. Soft. Comput., Vol. 7, pp. 534–9, 2007. DOI: 10.1016/j.asoc.2006.10.001.
  • A. R. G. Castro and V. Miranda, “Knowledge discovery in neural networks with application to transformer failure diagnosis,” IEEE Trans. Power Syst., Vol. 20, no. 2, pp. 717–24, 2005. DOI: 10.1109/TPWRS.2005.846074.
  • M. Duval and A. DePabla, “Interpretation of gas-in-oil analysis using new IEC publication 60599 and IEC TC 10 databases,” IEEE Electr. Insul. Mag., Vol. 17, no. 2, pp. 31–41, 2001. DOI: 10.1109/57.917529.
  • T. M. Lakshmi, A. Martin, R. M. Begum, and V. P. Venkatesan, “An analysis on performance of decision tree algorithms using student’s qualitative data,” Int. J. Modern Educ. Comput. Sci., Vol. 5, pp. 18–27, 2013. DOI: 10.5815/ijmecs.2013.05.03.
  • G. Kaur and A. Chhabra, “Improved J48 classification algorithm for the prediction of diabetes,” Int. J. Comput. Appl., Vol. 98, no. 22, July 2014. DOI: 10.5120/17314-7433.
  • L. Busoniu, R. Babuska, B. De Schutter, and D. Ernst. Reinforcement Learning and Dynamic Programming Using Function Approximator. CRC Press, 2010.
  • Y. Zhang, X. Li, H. Zheng, H. Yao, J. Liu, C. Zhang, H. Peng, and J. Jiao, “A fault diagnosis model of power transformers based on dissolved gas analysis features selection and improved Krill Herd algorithm optimized support vector machine,” IEEE. Access., Vol. 7, pp. 102803–11, 2019. doi: 10.1109/ACCESS.2019.2927018

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.