914
Views
21
CrossRef citations to date
0
Altmetric
Review Articles

Key Components of Rectenna System: A Comprehensive Survey

, , , , &

References

  • W. Saeed, N. Shoaib, H. M. Cheema, and M. U. Khan, “RF energy harvesting for ubiquitous, zero power wireless sensors,” Int. J. Antennas Prop, Vol. 2018, pp. 16, 2018. Article ID 8903139.
  • W. C. Brown, “The microwave powered helicopter,” J. Microw. Power, Vol. 1, no. 1, pp. 1–20, Jun. 2016. doi: 10.1080/00222739.1966.11688626
  • W. C. Brown, et al. “Microwave to dc converter,” US Patent US3434678A, filed 05 May 1965 and issued 25 March 1969.
  • H. Jabbar, Y. S. Song, and T. T. Jeong, “RF energy harvesting system and circuits for charging of mobile devices,” IEEE Trans. Consumer Electron, Vol. 56, no. 1, pp. 247–253, 2010. doi: 10.1109/TCE.2010.5439152
  • A. Nimo, D. Grgic, and L. M. Reindl, “Optimization of passive low power wireless electromagnetic energy harvesters,” Sensors, Vol. 12, pp. 13636–13663, 2012. doi: 10.3390/s121013636
  • Z. Zakaria, et al., “Current developments of RF energy harvesting system for wireless sensor networks,” Advances in Information Sciences and Service Sciences (AISS, Vol. 5, no. 11, pp. 328–339, June 2013. doi: 10.4156/aiss.vol5.issue11.39
  • E. Donchev, et al., “The rectenna device: from theory to practice (a review),” MRS Energy & Sustainability, Vol. 1, pp. 1–34, 2014. doi: 10.1557/mre.2014.6
  • L. K. Divakaran, D. D. Krishna, and Nasimuddin, “RF energy harvesting systems: an overview and design issues,” Int J RF Microw Comput Aided Eng, Vol. 29, no. 1, pp. 1–15, 2019. doi: 10.1002/mmce.21633
  • M. Cansiz, D. Altinel, and G. K. Kurt, “Efficiency in RF energy harvesting systems: a comprehensive review,” Energy, Vol. 174, pp. 292–309, May 2019. doi: 10.1016/j.energy.2019.02.100
  • B. Strassner, and K. Chang, “5.8-GHz circularly polarized rectifying antenna for wireless microwave power transmission,” IEEE Trans. Microw. Theory Techn, Vol. 50, no. 8, pp. 1870–1876, Aug. 2002. doi: 10.1109/TMTT.2002.801312
  • B. Strassner, and K. Chang, “5.8-GHz circularly polarized dual-rhombic-loop traveling-wave rectifying antenna for low power-density wireless power transmission applications,” IEEE Trans. Microw. Theory Techn, Vol. 51, no. 5, pp. 1548–1155, 2003. doi: 10.1109/TMTT.2003.810137
  • B. Strassner, and K. Chang, “Highly efficient C-band circularly polarized rectifying antenna array for wireless microwave power transmission,” IEEE Trans. Antennas Propag, Vol. 51, no. 6, pp. 1347–1356, June 2003. doi: 10.1109/TAP.2003.812252
  • T. C. Yo, C. M. Lee, C. M. Hsu, and C. H. Luo, “Compact circularly polarized rectenna with unbalanced circular slots,” IEEE Trans. Antennas Propag, Vol. 56, pp. 882–886, 2008. doi: 10.1109/TAP.2008.916956
  • Z. Harouni, L. Cirio, L. Osman, A. Gharsallah, and O. Picon, “A dual circularly polarized 2.45-ghz rectenna for wireless power transmission,” IEEE Antennas Wireless Propag. Lett, Vol. 10, pp. 306–309, Apr. 2011. doi: 10.1109/LAWP.2011.2141973
  • F. J. Huang, T. C. Yo, C. M. Lee, and C. H. Luo, “Design of circular polarization antenna with harmonic suppression for rectenna application,” IEEE Antennas Wireless Propag. Lett, Vol. 11, pp. 592–595, May 2012. doi: 10.1109/LAWP.2012.2201437
  • S. B. Vignesh, Nasimuddin, and A. Alphones, “Circularly polarized strips integrated microstrip antenna for energy harvesting applications,” Microw. Opt. Technol. Lett, Vol. 58, no. 5, pp. 1044–1049, May 2016. doi: 10.1002/mop.29721
  • S. Ghosh, “Design and testing of rectifying antenna for RF energy scavenging in GSM 900 band,” Int. J. Comp. Appli, Vol. 39, no. 1, pp. 36–44, Jan. 2017.
  • S. Ahmed, Z. Zakaria, M. N. Husain, I. M. Ibrahim, and A. Alhegazi, “Efficient feeding geometries for rectenna design at 2.45 GHz,” Electron. Lett, Vol. 53, pp. 1585–1587, Nov. 2017. doi: 10.1049/el.2017.2657
  • N. Zainol, Z. Zakaria, M. Abu, and M. M. Yunus, “A 2.45 GHz harmonic suppression rectangular patch antenna with circular polarization for wireless power transfer application,” IETE J,” Research, Vol. 64, no. 3, pp. 310–316, Jan. 2018.
  • Y. Liu, K. Huang, Y. Yang, and B. Zhang, “A low-profile lightweight circularly polarized rectenna array based on coplanar waveguide,” IEEE Antennas Wireless Propag. Lett, Vol. 17, no. 9, pp. 1659–1663, Sept. 2018. doi: 10.1109/LAWP.2018.2861938
  • K. T. Chandrasekaran, N. Nasimuddin, A. Alphones, and M. F. Karim, “Compact circularly polarized beam-switching wireless power transfer system for ambient energy harvesting applications,” Int J RF Microw Comput Aided Eng, Vol. 29, no. 1, pp. 1–10, 2019. doi: 10.1002/mmce.21642
  • S. Ladan, A. B. Guntupalli, and K. Wu, “A high-efficiency 24 GHz rectenna development towards millimeter-wave energy harvesting and wireless power transmission,” IEEE Trans. Circuits Syst. I, Reg. Papers., Vol. 61, pp. 3358–3366, 2014. doi: 10.1109/TCSI.2014.2338616
  • H. Sun, and W. Geyi, “A new rectenna with all-polarization-receiving capability for wireless power transmission,” IEEE Antennas Wireless Propag. Lett, Vol. 15, pp. 814–817, 2016. doi: 10.1109/LAWP.2015.2476345
  • J. H. Chou, D. B. Lin, K. L. Weng, and H. J. Li, “All polarization receiving rectenna with harmonic rejection property for wireless power transmission,” IEEE Trans. Antennas Propag, Vol. 62, no. 10, pp. 5242–5249, Oct. 2014. doi: 10.1109/TAP.2014.2340895
  • W. Haboubi, “An efficient dual-circularly polarized rectenna for RF energy harvesting in the 2.45 GHz ISM band,” Progress In Electromagnetics Research, Vol. 148, pp. 31–39, 2014. doi: 10.2528/PIER14031103
  • T. S. Almoneef, F. Erkmen, and O. M. Ramahi, “Harvesting the energy of multi-polarized electromagnetic waves,” Scientific Reports, Vol. 7, no. 1, pp. 1–14, Nov. 2017.
  • S. S. Vinnakota, R. Kumari, and B. Majumder, “Dual-polarized high gain resonant cavity antenna for radio frequency energy harvesting,” Int J RFMiCAE, Vol. 29, no. 12, pp. 1–12, Dec. 2019.
  • M. Arrawatia, M.S. Baghini, G. Kumar, “RF energy harvesting system from cell towers in 900 MHz band,” 2011, pp. 1–5.
  • A. A. Masius, Y. C. Wong, and K. T. Lau, “Miniature high gain slot-fed rectangular dielectric resonator antenna for IoT RF energy harvesting,” AEU-Int. J. Electron. C, Vol. 85, pp. 39–46, 2018. doi: 10.1016/j.aeue.2017.12.023
  • W. J. Sun, W. W. Yang, P. Chu, and J. X. Chen, “A wideband stacked dielectric resonator antenna for 5G applications,” Int J RF Microw Comput Aided Eng, Vol. 29, no. 10, pp. 1–6, 2019.
  • H. Sun, Y. X. Guo, M. He, and Z. Zhong, “Design of a high-efficiency 2.45-GHz rectenna for low-input-power energy harvesting,” IEEE Antennas Wireless Propag. Lett, Vol. 11, pp. 929–932, 2012. doi: 10.1109/LAWP.2012.2212232
  • C. Phongcharoenpanich, and K. Boonying, “A 2.4-GHz dual polarized suspended square plate rectenna with inserted annular rectangular ring slot,” Int J RF Microw Comput Aided Eng, Vol. 26, no. 1, pp. 164–173, Oct. 2015.
  • H. Sun, “An enhanced rectenna using differentially-fed rectifier for wireless power transmission,” IEEE Antennas Wireless Propag. Lett, Vol. 15, pp. 32–35, 2016.
  • D. Kumar, and K. Chaudhary, “Design of an improved differentially fed antenna array for rf energy harvesting,” IETE J. Research, 1–7, 2018. doi: 10.1080/03772063.2018.1488628
  • G. Zheng, K. Dang, B. Sun, and J. Zhang, “Design of perfect electrical conductor wall-loaded 2.45 GHz high-efficiency rectenna,” Int J RF Microw Comput Aided Eng, Vol. 29, no. 3, pp. 1–8, Mar. 2019. doi: 10.1002/mmce.21604
  • Y. J. Ren, and K. Chang, “5.8-GHz circularly polarized dual-diode rectenna and rectenna array for microwave power transmission,” IEEE Trans. Microw. Theory Techn, Vol. 54, no. 4, pp. 1495–1502, Apr. 2006. doi: 10.1109/TMTT.2006.871362
  • C. Yu, F. Tan, and C. Liu, “A C-band microwave rectenna using aperture-coupled antenna array and novel class-F rectifier with cavity,” J. Electromagn. Waves Appl, Vol. 29, pp. 977–991, 2015. doi: 10.1080/09205071.2015.1018394
  • W. T. Sethi, H. Vettikalladi, H. Fathallah, and M. Himdi, “Optimising an antenna array at 1550 nm band,” Micro & Nano Lett, Vol. 11, no. 11, pp. 779–782, 2016. doi: 10.1049/mnl.2016.0493
  • M. Singh, S. Agrawal, and M. S. Parihar, “Design of a rectenna system for GSM-900 band using novel broadside 2×1 array antenna,” J. Engg, Vol. 2017, no. 6, pp. 232–236, 2017.
  • H. Sun, and W. Geyi, “A new rectenna using beamwidth-enhanced antenna array for RF power harvesting applications,” IEEE Antennas Wireless Propag. Lett, Vol. 16, pp. 1451–1454, 2017. doi: 10.1109/LAWP.2016.2642124
  • H. Mahfoudi, M. Tellache, and H. Takhedmit, “A wideband rectifier array on dual-polarized differential-feed fractal slotted ground antenna for RF energy harvesting,” Int J RF Microw Comput Aided Engg, Vol. 29, no. 8, pp. 1–9, Aug. 2019.
  • Y. Y. Hu, S. Sun, H. Xu, and H. Sun, “Grid-array rectenna with wide angle coverage for effectively harvesting RF energy of low power density,” IEEE Trans. Microw. Theory Techn, Vol. 67, no. 1, pp. 402–413, Jan. 2019.
  • S. Ladan, N. Ghassemi, A. Ghiotto, and K. Wu, “Highly efficient compact rectenna for wireless energy harvesting application,” IEEE Microw. Mag, Vol. 14, pp. 117–122, 2013. doi: 10.1109/MMM.2012.2226629
  • M. Zeng, A. S. Andrenko, X. Liu, Z. Li, and H. Z. Tan, “A compact fractal loop rectenna for RF energy harvesting,” IEEE Antennas Wireless Propag. Lett, Vol. 16, pp. 2424–2427, 2017. doi: 10.1109/LAWP.2017.2722460
  • E. L. Chuma, L. D. L. T. Rodriguez, Y. Iano, L. L. B. Roger, and M. A. Sanchez-Soriano, “Compact rectenna based on a fractal geometry with a high conversion energy efficiency per area,” IET Microw. Antennas Propag, Vol. 12, pp. 173–178, 2018. doi: 10.1049/iet-map.2016.1150
  • Y. Shi, J. Jing, Y. Fan, L. Yang, and M. Wang, “Design of a novel compact and efficient rectenna for Wi-Fi energy harvesting,” Progr. Electromagn. Res. C, Vol. 83, pp. 57–70, 2018. doi: 10.2528/PIERC18012803
  • Q. Awais, Y. Jin, H. T. Chattha, M. Jamil, H. Qiang, and B. A. Khawaja, “A compact rectenna system with high conversion efficiency for wireless energy harvesting,” IEEE Access, Vol. 6, pp. 35857–35866, 2018. doi: 10.1109/ACCESS.2018.2848907
  • K. Celik, and E. Kurt, “A novel meander line integrated E-shaped rectenna for energy harvesting applications,” Int J RF Microw Comput Aided Eng, Vol. 29, no. 1, pp. 1–10, Jan. 2019. doi: 10.1002/mmce.21627
  • A. Okba, A. Takacs, and H. Aubert, “Compact flat dipole rectenna for IoT applications,” Progr. Electromagn. Res. C, Vol. 87, pp. 39–49, 2018. doi: 10.2528/PIERC18071604
  • M. Wang, L. Yang, Y. Fan, M. Shen, Y. Li, and Y. Shi, “A compact omnidirectional dual-circinal rectenna for 2.45 GHz wireless power transfer,” Int J RF Microw Comput Aided Eng, Vol. 29, no. 1, pp. 1–7, Jan. 2019.
  • A. Abdi, and H. Aliakbarian, ““A miniaturized UHF-band rectenna for power transmission to deep-body implantable devices,” Cardiovascular devices and systems,” IEEE J. Translational Eng. in Health and Medicine, Vol. 7, pp. 1–11, 2019. doi: 10.1109/JTEHM.2019.2910102
  • M. Palandoken, and C. Gocen, “A modified Hilbert fractal resonator based rectenna design for GSM900 band RF energy harvesting applications,” Int J RF Microw Comput Aided Eng, Vol. 29, no. 1, pp. 1–8, Jan. 2019.
  • M. J. Nie, X. X. Yang, G. N. Tan, and B. Han, “A compact 2.45-GHz broadband rectenna using grounded coplanar waveguide,” IEEE Antennas Wireless Propag. Lett, Vol. 14, pp. 986–989, Apr. 2015. doi: 10.1109/LAWP.2015.2388789
  • M. Arrawatia, M. S. Baghini, and G. Kumar, “Broadband bent triangular omnidirectional antenna for RF energy harvesting,” IEEE Antennas Wireless Propag. Lett, Vol. 15, pp. 36–39, 2016.
  • S. Agrawal, R. D. Gupta, M. S. Parihar, and P. N. Kondekar, “Wideband high gain dielectric resonator antenna for RF energy harvesting application,” AEU-Int. J. Electron. C, Vol. 78, pp. 24–31, May 2017. doi: 10.1016/j.aeue.2017.05.018
  • S. Agrawal, M. S. Parihar, and P. N. Kondekar, “Broadband rectenna for radio frequency energy harvesting application,” IETE J,” Research, Vol. 64, no. 3, pp. 347–353, Jan. 2018.
  • X. Bai, J. W. Zhang, L. J. Xu, and B. H. Zhao, “A broadband CPW fractal antenna for RF energy harvesting,” ACES J, Vol. 33, no. 5, pp. 482–487, May 2018.
  • N. Saranya, and T. Kesavamurthy, “Design and performance analysis of broadband rectenna for an efficient RF energy harvesting application,” Int J RF Microw Comput Aided Eng, Vol. 29, no. 21628, pp. 1–12, 2019.
  • H. Kumar, M. Arrawatia, and G. Kumar, “Broadband planar log-periodic dipole array antenna based RF-energy harvesting system,” IETE J,” Research, Vol. 65, no. 1, pp. 39–43, Dec. 2017.
  • N. H. Nguyen, et al., “A novel wideband circularly polarized antenna for RF energy harvesting in wireless sensor nodes,” Int. J. Antennas Propag, Vol. 2018, pp. 1–9, 2018. ID 1692018. doi: 10.1155/2018/1692018
  • Y. Shi, J. Jing, Y. Fan, L. Yang, J. Pang, and M. Wang, “Efficient RF energy harvest with a novel broadband Vivaldi rectenna,” Microw. Opt. Technol. Lett, Vol. 60, pp. 2420–2425, 2018.
  • Y. Shi, Y. Fan, Y. Li, L. Yang, and M. Wang, “An efficient broadband slotted rectenna for wireless power transfer at LTE band,” IEEE Trans. Antennas Propag, Vol. 67, no. 2, pp. 814–822, Feb. 2019. doi: 10.1109/TAP.2018.2882632
  • O. M. A. Dardeer, H. A. Elsadek, and E. A. Abdallah. “Compact broadband rectenna for harvesting RF energy in WLAN and WiMAX applications,” 2019 Int. Conf. on Innovative Trends in Comp. Eng. (ITCE’2019), Aswan, Egypt, 2019, pp. 292-296.
  • F. J. Huang, C. M. Lee, C. L. Chang, L. K. Chen, T. C. Yo, and C. H. Luo, “Rectenna application of miniaturized implantable antenna design for triple-band biotelemetry communication,” IEEE Trans. Antennas Propag, Vol. 59, pp. 2646–2653, 2011. doi: 10.1109/TAP.2011.2152317
  • K. Niotaki, S. Kim, S. Jeong, A. Collado, A. Georgiadis, and M. M. Tentzeris, “A compact dual-band rectenna using slot-loaded dual band folded dipole antenna,” IEEE Antennas Wireless Propag. Lett, Vol. 12, pp. 1634–1637, 2013. doi: 10.1109/LAWP.2013.2294200
  • V. Kuhn, C. Lahuec, F. Seguin, and C. Person, “A multi-band stacked RF energy harvester with RF-to-DC efficiency up to 84%,” IEEE Trans. Microw. Theory Techn, Vol. 63, no. 5, pp. 1768–1778, May 2015. doi: 10.1109/TMTT.2015.2416233
  • S. Agrawal, M. S. Parihar, and P. N. Kondekar, “A dual-band rectenna using broadband DRA loaded with slot,” Int. J. Microw. Wireless Technologies, 59–66, February 2018. doi: 10.1017/S1759078717001234
  • S. Shen, C. Y. Chiu, and R. D. Murch, “A dual-port triple-band L-probe microstrip patch rectenna for ambient RF energy harvesting,” IEEE Antennas Wireless Propag. Lett, Vol. 16, pp. 3071–3074, 2017. doi: 10.1109/LAWP.2017.2761397
  • M. Zeng, Z. Li, A. S. Andrenko, Y. Zeng, and H. Z. Tan, “A compact dual-band rectenna for GSM 900 and GSM 1800 energy harvesting,” Int. J. Antennas Propag, Vol. 2018, pp. 1–9, 2018. Article ID 4781465. doi: 10.1155/2018/4781465
  • V. Palazzi, et al., “A novel ultra-light weight multiband rectenna on paper for RF energy harvesting in the next generation LTE bands,” IEEE Trans. Microw. Theory Techn, Vol. 66, no. 1, pp. 366–379, Jan. 2018. doi: 10.1109/TMTT.2017.2721399
  • A. Khemar, A. Kacha, H. Takhedmit, and G. Abib, “Design and experiments of a dual-band rectenna for ambient RF energy harvesting in urban environments,” IET Microw. Antennas Propag, Vol. 12, no. 1, pp. 49–55, 2018. doi: 10.1049/iet-map.2016.1040
  • O. Amjad, S. W. Munir, S. T. Imeci, and A. O. Ercan, “Design and implementation of dual band microstrip patch antenna for WLAN energy harvesting system,” ACES J, Vol. 33, no. 7, pp. 746–751, Jul. 2018.
  • S. Chandravanshi, S. S. Sarma, and M. J. Akhtar, “Design of triple band differential rectenna for RF energy harvesting,” IEEE Trans. Antennas Propag, Vol. 66, no. 6, pp. 2716–2726, Jun. 2018. doi: 10.1109/TAP.2018.2819699
  • N. Hassan, et al., “Design of dual-band microstrip patch antenna with right-angle triangular aperture slot for energy transfer application,” Int J RF Microw Comput Aided Eng, Vol. 29, no. 1, pp. 1–11, Jan. 2019. doi: 10.1002/mmce.21666
  • H. Sun, Y. X. Guo, M. He, and Z. Zhong, “A dual-band rectenna using broadband Yagi antenna array for ambient RF power harvesting,” IEEE Antennas Wireless Propag. Lett, Vol. 12, pp. 918–921, 2013. doi: 10.1109/LAWP.2013.2272873
  • L. Zhu, J. Zhang, W. Han, L. Xu, and X. Bai, “A novel RF energy harvesting cube based on air dielectric antenna arrays,” Int J RF Microw Comput Aided Eng, Vol. 29, no. 1, pp. 1–7, Jan. 2019.
  • F. S. M. Noor, Z. Zakaria, H. Lago, and M. A. M. Said, “Dual-band aperture-coupled rectenna for radio frequency energy harvesting,” Int J RF Microw Comput Aided Eng, Vol. 29, no. 1, pp. 1–9, Jan. 2019.
  • S. Shrestha, S. R. Lee, and D. Y. Choi, “A new fractal-based miniaturized dual band patch antenna for RF energy harvesting,” Int. J. Antennas Propag, Vol. 2014, pp. 1–9, 2014, Article ID 805052. doi: 10.1155/2014/805052
  • D. K. Ho, V. D. Ngo, I. Kharrat, T. P. Vuong, Q. C. Nguyen, and M. T. Le, “A novel dual-band rectenna for ambient RF energy harvesting at GSM 900 MHz and 1800MHz,” Advances in Science, Technology and Engineering Systems Journal, Vol. 2, no. 3, pp. 612–616, 2017. doi: 10.25046/aj020378
  • N. Singh, B. K. Kanaujia, M. T. Beg, M. Siddique, S. Kumar, and M. K. Khandelwal, “A dual band rectifying antenna for RF energy harvesting,” J. Computational Electron, Vol. 17, pp. 1748–1755, 2018. doi: 10.1007/s10825-018-1241-6
  • M. Wang, Y. Fan, L. Yang, Y. Li, J. Feng, and Y. Shi, “Compact dual-band rectenna for RF energy harvest based on a tree-like antenna,” IET Microw. Antennas Propag, Vol. 13, no. 9, pp. 1350–1357, 2019. doi: 10.1049/iet-map.2018.5704
  • N. Singh, B. K. Kanaujia, M. T. Beg, M. Siddique, T. Khan, and S. Kumar, “A dual polarized multiband rectenna for RF energy harvesting,” AEU-Int. J. Electron. C, Vol. 93, pp. 123–131, 2018. doi: 10.1016/j.aeue.2018.06.020
  • N. Singh, B. K. Kanaujia, M. T. Beg, M. Siddique, and S. Kumar, “A triple band circularly polarized rectenna for RF energy harvesting,” Electromag, 1–10, Aug. 2019.
  • N. Singh, B. K. Kanaujia, M. T. Beg, M. Siddique, S. Kumar, H. C. Choi, and K. W. Kim, “Low profile multiband rectenna for efficient energy harvesting at microwave frequencies,” Int. J. Electron, Vol. 106, no. 12, pp. 2057–2071, Jul. 2019. doi: 10.1080/00207217.2019.1636302
  • I. Adam, M. N. M. Yasin, H. A. Rahim, P. J. Soh, and M. F. Abdulmalek, “A compact dual-band rectenna for ambient RF energy harvesting,” Microw. Opt. Technol. Lett, Vol. 60, no. 11, pp. 1–9, Nov. 2018.
  • A. Nimo, T. Beckedahl, T. Ostertag, and L. Reindl, “Analysis of passive RF-DC power rectification and harvesting wireless RF energy for Micro-watt sensors,” AIMS Energy, Vol. 3, no. 2, pp. 184–200, Apr. 2015. doi: 10.3934/energy.2015.2.184
  • A. Okba, A. Takacs, H. Aubert, S. Charlot, and P. F. Calmon, “Multi-band rectenna for microwave applications,” Comptes Rendus Physique, Vol. 18, pp. 107–117, 2017. doi: 10.1016/j.crhy.2016.12.002
  • H. Takhedmit, L. Cirio, S. Bellal, D. Delcroix, and O. Picon, “Compact and efficient 2.45 GHz circularly polarized shorted ring-slot rectenna,” Electron. Lett, Vol. 48, no. 5, pp. 1–2, 2012. doi: 10.1049/el.2011.3890
  • A. Mavaddat, S. H. M. Armaki, and A. R. Erfanian, “Millimeter wave energy harvesting using 4×4 microstrip patch antenna array,” IEEE Antennas Wireless Propag. Lett, Vol. 14, pp. 515–518, 2015. doi: 10.1109/LAWP.2014.2370103
  • A. Mouapi, N. Hakem, and G. V. Kamani. “A selective rectifier for RF energy harvesting under non-stationary propagation conditions,” 2018 IEEE Int. Conf. Environm. Electr. Eng. and 2018.
  • K. W. Lui, A. Vilches, and C. Toumazou, “Ultra-efficient microwave harvesting system for battery-less micropower microcontroller platform,” IET Microw. Antennas Propag, Vol. 5, no. 7, pp. 811–817, 2011. doi: 10.1049/iet-map.2010.0250
  • Z. Liu, Z. Zhong, and Y. X. Guo, “Enhanced dual-band ambient RF energy harvesting with ultra-wide power range,” IEEE Microw. Wireless Compon. Lett, Vol. 25, pp. 630–632, 2015. doi: 10.1109/LMWC.2015.2451397
  • V. Marian, B. Allard, C. Vollaire, and J. Verdier, “Strategy for microwave energy harvesting from ambient field or a feeding source,” IEEE Trans. Power Electron, Vol. 27, no. 11, pp. 4481–4491, Nov. 2012. doi: 10.1109/TPEL.2012.2185249
  • H. Nakamoto, D. Yamazaki, T. Yamamoto, H. Kurata, S. Yamada, K. Mukaida, T. Ninomiya, T. Ohkawa, S. Masui, and K. Gotoh, “A passive UHF RF identification CMOS tag IC using ferroelectric RAM in 0.35-um technology,” IEEE J. Solid-State Circuits, Vol. 42, no. 1, pp. 101–110, Jan. 2007. doi: 10.1109/JSSC.2006.886523
  • K. Kotani, A. Sasaki, and T. Ito, “High-efficiency differential-drive CMOS rectifier for UHF RFIDs,” IEEE J. Solid-State Circuits, Vol. 44, no. 11, pp. 3011–3018, Nov. 2009. doi: 10.1109/JSSC.2009.2028955
  • G. Papotto, F. Carrara, and G. Palmisano, “A 90-nm CMOS threshold-compensated RF energy harvester,” IEEE J. Solid-State Circuits, Vol. 46, no. 9, pp. 1985–1997, Sep. 2011. doi: 10.1109/JSSC.2011.2157010
  • M. Stoopman, S. Keyrouz, H. J. Visser, K. Philips, and W. A. Serdijn, “Co-Design of a CMOS rectifier and small loop antenna for highly sensitive RF energy harvesters,” IEEE J. Solid-State Circuits, Vol. 49, no. 3, pp. 622–634, Mar. 2014. doi: 10.1109/JSSC.2014.2302793
  • Z. Hameed, and K. Moez, “Hybrid forward and backward threshold- compensated rf-dc power converter for RF energy harvesting,” IEEE J. Emerg. Sel. Topics Circuits Syst, Vol. 4, no. 3, pp. 335–343, Sept. 2014. doi: 10.1109/JETCAS.2014.2337211
  • S. Hemour, Y. Zhao, C. H. P. Lorenz, D. Houssameddine, Y. Gui, C. M. Hu, and K. Wu, “Towards low-power high-efficiency RF and microwave energy harvesting,” IEEE Trans. Microw. Theory Techn, Vol. 62, no. 4, pp. 965–976, Apr. 2014. doi: 10.1109/TMTT.2014.2305134
  • T. Oka, T. Ogata, K. Saito, and S. Tanaka. “Triple-band single-diode microwave rectifier using CRLH transmission line,” Proc. 2014 Asia-Pacific Microw. Conf., 2014, pp. 1013–1015.
  • S. Joshi, and G. Moddel, “Simple figure of merit for diodes in optical rectennas,” IEEE J. Photovoltaics, Vol. 6, pp. 668–672, 2016. doi: 10.1109/JPHOTOV.2016.2541460
  • S. N. Daskalakis, A. Georgiadis, G. Goussetis, and M. M. Tentzeris, “A rectifier circuit insensitive to the angle of incidence of incoming waves based on a wilkinson power combiner,” IEEE Trans. Microw. Theory Techn, Vol. 67, no. 7, pp. 3210–3218, Jul. 2019. doi: 10.1109/TMTT.2019.2912192
  • M. Abdallah, J. Costantine, A. H. Ramadan, and Y. Tawk, “Enhanced radio frequency rectifier with a power splitting/combining topology for wireless energy transfer and harvesting,” IET Microw. Antennas Propag, Vol. 13, no. 9, pp. 1280–1286, 2019. doi: 10.1049/iet-map.2018.5222
  • H. Mei, X. Yang, G. Tan, and B. Han, “High-efficiency microstrip rectenna for Microwave power transmission at Ka bandwidth with Low cost,” IET Microw. Antennas Propag, Vol. 10, no. 15, pp. 1648–1655, Dec. 2016. doi: 10.1049/iet-map.2016.0025
  • Y. Q. Wang, and X. X. Yang. Design of a high-efficiency circularly polarized rectenna for 35 GHz microwave power transmission system”, 2012 Asia-Pacific Power and Energy Engineering Conference, March 2012, pp. 1-4.
  • W. Storr. Electronic tutorial about power diodes as rectifiers. Technical report, Basic Electronics Tutorials, 2013.
  • F. Losee. RF systems, components, and circuits handbook, chapter semiconduction diodes and their circuits. Boston: Artech House, Inc., 1997.
  • F. Erkmen, T. S. Almoneef, and O. M. Ramahi, “Electromagnetic energy harvesting using full-wave rectification,” IEEE Trans. Microw. Theory Techn, Vol. 65, no. 5, pp. 1843–1851, 2017. doi: 10.1109/TMTT.2017.2673821
  • F. Erkmen, and T. S. Alm, “Scalable electromagnetic energy harvesting using frequency-selective surfaces,” IEEE Trans. Microw. Theory Techn, Vol. 66, no. 5, pp. 2433–2441, 2018. doi: 10.1109/TMTT.2018.2804956
  • B. Razavi, Fundamentals of Microelectronics, 2nd ed., Los Angeles: Wiley Publications, 2013.
  • N. Shariati, W. S. T. Rowe, J. R. Scott, and K. Ghorbani, “Multi-service highly sensitive rectifier for enhanced RF energy scavenging,” Sci. Rep, Vol. 5, no. 9655, pp. 1–9, 2015.
  • J. Heikkinen, and M. Kivikoski, “A novel dual-frequency circularly polarized rectenna,” IEEE Antennas Wireless Propag. Lett, Vol. 2, pp. 330–333, 2003. doi: 10.1109/LAWP.2004.824166
  • T. Mitani, S. Kawashima, and T. Nishimura, “Analysis of voltage doubler behavior of 2.45-GHz voltage doubler-type rectenna,” IEEE Trans. Microw. Theory Techn, Vol. 65, no. 4, pp. 1051–1057, 2017. doi: 10.1109/TMTT.2017.2668413
  • M. M. Mansour, and H. Kanaya, “High-efficient broadband cpw RF rectifier for wireless energy harvesting,” IEEE Microw. Wireless Compon. Lett, Vol. 29, no. 4, pp. 288–290, Apr. 2019. doi: 10.1109/LMWC.2019.2902461
  • M. Mansour, X. L. Polozec, and H. Kanaya, “Enhanced broadband RF differential rectifier integrated with archimedean spiral antenna for wireless energy harvesting applications,” Sensors, Vol. 19, no. 655, pp. 1–13, 2019.
  • C. Song, Y. Huang, J. Zhou, J. Zhang, S. Yuan, and P. Carter, “A high-efficiency broadband rectenna for ambient wireless energy harvesting,” IEEE Trans. Antennas Propag, Vol. 63, no. 8, pp. 3486–3495, 2015. doi: 10.1109/TAP.2015.2431719
  • M. A. Gozel, M. Kahriman, and O. Kasar, “Design of an efficiency-enhanced Greinacher rectifier operating in the GSM 1800 band by using rat-race coupler for RF energy harvesting applications,” Int J RF Microw Comput Aided Eng, Vol. 29, no. 1, pp. 1–8, Jan. 2019.
  • J. Park, Y. Kim, Y. J. Yoon, J. So, and J. Shin, “Rectifier design using distributed greinacher voltage multiplier for high frequency wireless power transmission,” J. Electrom. Eng. Scie, Vol. 14, no. 1, pp. 25–30, 2014. doi: 10.5515/JKIEES.2014.14.1.25
  • S. Fan, Z. Yuan, W. Gou, Y. Zhao, C. Song, Y. Huang, J. Zhou, and L. Geng, “A 2.45-GHz rectifier-booster regulator with impedance matching converters for wireless energy harvesting,” IEEE Trans. Microw. Theory Techn, Vol. 67, no. 9, pp. 3833–3843, Sept. 2019. doi: 10.1109/TMTT.2019.2910062
  • Y. Han, O. Leitermann, D. A. Jackson, J. M. Rivas, and D. J. Perreault, “Resistance compression networks for radio-frequency power conversion,” IEEE Trans. Power Electron, Vol. 22, no. 1, pp. 41–53, Jan. 2007. doi: 10.1109/TPEL.2006.886601
  • K. Niotaki, A. Georgiadis, A. Collado, and J. S. Vardakas, “Dual-band resistance compression networks for improved rectifier performance,” IEEE Trans. Microw. Theory Techn, Vol. 62, no. 12, pp. 3512–3521, Dec. 2014. doi: 10.1109/TMTT.2014.2364830
  • T. W. Barton, J. M. Gordonson, and D. J. Perreault, “Transmission line resistance compression networks and applications to wireless power transfer,” IEEE J. Emerg. Sel. Topics Power Electron, Vol. 3, no. 1, pp. 252–260, Mar. 2015. doi: 10.1109/JESTPE.2014.2319056
  • Z. Wang, W. Zhang, D. Jin, H. Xie, and X. Lv. “A full-wave RF energy harvester based on new configurable diode connected MOSFETs”, 2016 IEEE Int. Conf. Microw. Millimeter Wave Technology (ICMMT), Jun. 2016, pp. 1-3.
  • H. Sun, Z. Zhong, and Y. X. Guo, “An adaptive reconfigurable rectifier for wireless power transmission,” IEEE Microw. Wireless Components Lett, Vol. 23, no. 9, pp. 492–494, 2013. doi: 10.1109/LMWC.2013.2250272
  • A. M. Almohaimeed, M. C. E. Yagoub, J. A. Lima, and R. E. Amaya. “Dual-band harvester with wide range input power for WPT applications”, 2018 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW), Jun. 2018, pp. 1-4.
  • J. J. Lu, X. X. Yang, H. Mei, and C. Tan, “A four-band rectifier with adaptive power for electromagnetic energy harvesting,” IEEE Microw. Wireless Compon. Lett, Vol. 26, no. 10, pp. 819–821, Oct. 2016.
  • X. Wang, and A. Mortazawi, “Rectifier array with adaptive power distribution for wide dynamic range RF-DC conversion,” IEEE Trans. Microw. Theory Techn, Vol. 67, no. 1, pp. 392–401, Jan. 2019. doi: 10.1109/TMTT.2018.2875959
  • N. Singh, “A compact and efficient graphene FET based RF energy harvester for green communication,” Int. J. Electron. Commun. (AEÜ), Vol. 115, pp. 153059–153066, 2020. doi: 10.1016/j.aeue.2019.153059
  • A. Mouapi, and N. Hakem, “A selective rectifier for RF energy harvesting for IoT applications,” Antenna Propag. Society-2018, 2523–2524, 2018. doi: 10.1109/APUSNCURSINRSM.2018.8608705
  • N. Eltresy, D. Elsheakh, E. Abdallah, and H. Elhenawy. “RF energy harvesting using efficiency dual band rectifier,” Proc. 2018 Asia-Pacific Microw. Conf., pp. 1453-1455, 2018.
  • C. Song, Y. Huang, P. Carter, J. Zhou, S. D. Joseph, and G. Li, “Novel compact and broadband frequency- selectable rectennas for a wide input-power and load impedance range,” IEEE Trans. Antennas Propag, Vol. 66, no. 7, pp. 3306–3316, 2018. doi: 10.1109/TAP.2018.2826568
  • Y. S. Chen, and C. W. Chiu, “Maximum achievable power conversion efficiency obtained through an optimized rectenna structure for RF energy harvesting,” IEEE Trans. Antennas Propag, Vol. 65, no. 5, pp. 2305–2317, May 2017. doi: 10.1109/TAP.2017.2682228
  • C. H. P. Lorenz, S. Hemour, W. Liu, A. Badel, F. Formosa, and K. Wu, “Hybrid power harvesting for increased power conversion efficiency,” IEEE Microw. Wireless Compon. Lett, Vol. 25, no. 10, pp. 687–689, Oct. 2015. doi: 10.1109/LMWC.2015.2463229
  • X. Gu, S. Hemour, L. Guo, and K. Wu, “Integrated cooperative ambient power harvester collecting ubiquitous radio frequency and kinetic energy,” IEEE Trans. Microw. Theory Techn, Vol. 66, no. 9, pp. 4178–4190, Sept. 2018. doi: 10.1109/TMTT.2018.2842723
  • P. Nintanavongsa, U. Muncuk, D. R. Lewis, and K. R. Chowdhury, “Design optimization and implementation for RF energy harvesting circuits,” IEEE J. Emerg. Sel. Topics Circuits Syst, Vol. 2, no. 1, pp. 24–33, Mar. 2012. doi: 10.1109/JETCAS.2012.2187106
  • G. D. Vita, and G. Iannaccone, “Design criteria for the RF section of UHF and microwave passive RFID transponders,” IEEE Trans. Microw. Theory Techn, Vol. 53, no. 9, pp. 2978–2990, Sep. 2005. doi: 10.1109/TMTT.2005.854229
  • Y. H. Suh, and K. Chang, “A high-efficiency dual-frequency rectenna for 2.45- and 5.8-GHz wireless power transmission,” IEEE Trans. Microw. Theory Techn, Vol. 50, no. 7, pp. 1784, July 2002. doi: 10.1109/TMTT.2002.800430
  • Y. Chang, P. Zhang, and L. Wang, “Highly efficient differential rectenna for RF energy harvesting,” Microw. Opt. Technol. Lett, Vol. 61, no. 12, pp. 2662–2668, Dec. 2019. doi: 10.1002/mop.31945
  • S. Agrawal, M. S. Parihar, and P. N. Kondekar, “Exact performance evaluation of RF energy harvesting with different circuit’s elements,” IETE Technical Review, Vol. 35, no. 5, pp. 514–522, 2018. doi: 10.1080/02564602.2017.1339577
  • T. Ungan, X. L. Polozecv, W. Walker, and L. Reindl. “RF energy harvesting design using high Q resonators,” IEEE MlT-S Int. Microw. Workshop on Wireless Sensing, Local Positioning, and RFIO (IMWS 2009-Croatia), 2009, pp. 1-4.
  • A. Nimo, D. Grgic, and L. M. Reindl. “Impedance optimization of wireless electromagnetic energy harvesters for maximum output efficiency at µW input power,” Proc. SPIE, Vol. 8341, no. 83410W, 2012, pp. 1-14.
  • C. Song, Y. Huang, P. Carter, J. Zhou, S. Yuan, Q. Xu, and M. Kod, “A novel six-band dual cp rectenna using improved impedance matching technique for ambient RF energy harvesting,” IEEE Trans. Antennas Propag, Vol. 64, no. 7, pp. 3160–3171, Jul. 2016. doi: 10.1109/TAP.2016.2565697
  • S. Agrawal, M. S. Parihar, and P. N. Kondekar, “A dual-band RF energy harvesting circuit using 4th order dual-band matching network,” Cogent Engineering, Vol. 4, pp. 1–10, 2017. doi: 10.1080/23311916.2017.1332705
  • J. Liu, and X. Y. Zhang, “Compact triple-band rectifier for ambient RF energy harvesting application,” IEEE Access, Vol. 6, pp. 19018–19024, 2018. doi: 10.1109/ACCESS.2018.2820143
  • C. Y. Hsu, S. C. Lin, and Z. M. Tsai, “Quadband rectifier using resonant matching networks for enhanced harvesting capability,” IEEE Microw. Wireless Compon. Lett, Vol. 27, no. 7, pp. 669–671, Jul. 2017. doi: 10.1109/LMWC.2017.2711578
  • M. Zeng, Z. Li, A. S. Andrenko, X. Liu, and H. Z. Tan, “Differential voltage octuple rectifiers for wireless energy harvesting,” Microw. Opt. Technol. Lett, Vol. 59, pp. 1574–1578, 2017. doi: 10.1002/mop.30586
  • H. Takhedmit, L. Cirio, B. Merabet, B. Allard, F. Costa, C. Vollaire, and O. Picon, “Efficient 2.45 GHz rectenna design including harmonic rejecting rectifier device,” Electron. Lett, Vol. 46, no. 12, pp. 1–2, June 2010. doi: 10.1049/el.2010.1075
  • X. X. Yang, C. Jiang, A. Z. Elsherbeni, F. Yang, and Y. Q. Wang, “A novel compact printed rectenna for data communication systems,” IEEE Trans. Antennas Propag, Vol. 61, no. 5, pp. 2532–2539, May 2013. doi: 10.1109/TAP.2013.2244550
  • Z. Ma, and G. A. E. Vandenbosch, “Wideband harmonic rejection Filtenna for wireless power transfer,” IEEE Trans. Antennas Propag, Vol. 62, no. 1, pp. 371–377, Jan. 2014. doi: 10.1109/TAP.2013.2287009
  • C. Song, Y. Huang, J. Zhou, P. Carter, S. Yuan, Q. Xu, and Z. Fei, “Matching network elimination in broadband rectennas for high-efficiency wireless power transfer and energy harvesting,” IEEE Trans. Industrial Electron, Vol. 64, pp. 3950–3961, 2017. doi: 10.1109/TIE.2016.2645505
  • P. Wu, S. Y. Huang, W. Zhou, W. Yu, Z. Liu, X. Chen, and C. Liu, “Compact high-efficiency broadband rectifier with multi-stage-transmission-line matching,” IEEE Trans. Circuits Syst-II: Express Briefs, Vol. 66, no. 8, pp. 1316–1320, Aug. 2019. doi: 10.1109/TCSII.2018.2886432
  • U. Olgun, C. C. Chen, and J. L. Volakis, “Investigation of rectenna array configurations for enhanced RF power harvesting,” IEEE Antennas Wireless Propag. Lett, Vol. 10, pp. 262–265, 2011. doi: 10.1109/LAWP.2011.2136371
  • E. L. Chuma, Y. Iano, M. S. Costa, L. T. Manera, and L. L. B. Roger, “A compact-integrated reconfigurable rectenna array for RF power harvesting with a practical physical structure,” Progr. Electromagn. Res. M, Vol. 70, pp. 89–98, 2018.
  • S. Shen, C. Y. Chiu, and R. D. Murch, “Multiport pixel rectenna for ambient RF energy harvesting,” IEEE Trans. Antennas Propag, Vol. 66, no. 2, pp. 644–656, Feb. 2018. doi: 10.1109/TAP.2017.2786320
  • S. Shen, Y. Zhang, C. Y. Chiu, and R. Murch, “An ambient RF energy harvesting system where the number of antenna ports is dependent on frequency,” IEEE Transactions on Microwave Theory and Techniques, Vol. 67, no. 9, pp. 3821–3832, 2019. doi: 10.1109/TMTT.2019.2906598
  • S. Shen, Y. Zhang, C. Y. Chiu, and R. Murch, “A triple-wideband high-gain multibeam ambient RF energy harvesting system utilizing hybrid combining,” IEEE Transactions on Industrial Electronics 2019. doi: 10.1109/TIE.2019.2952819
  • G. Monti, F. Congedo, D. D. Donno, and L. Tarricone, “Monopole-based rectenna for microwave energy harvesting of UHF RFID systems,” Prog. In Electromagn. Research C, Vol. 31, pp. 109–121, 2012. doi: 10.2528/PIERC12061501
  • T. Li, K. Sawada, H. Ogai, and W. Si, “UHF-Band wireless power transfer system for structural health monitoring sensor network,” Smart Materials Research, Vol. 2013, pp. 7. Article ID 496492, November 2013.
  • G. Monti, L. Corchia, and L. Tarricone, “UHF wearable rectenna on textile materials,” IEEE Trans. Antennas Propag, Vol. 61, no. 7, pp. 3869–3873, 2013. doi: 10.1109/TAP.2013.2254693
  • F. J. Huang, C. M. Lee, C. L. Chang, L. K. Chen, T. C. Yo, and C. H. Luo, “Rectenna application of miniaturized implantable antenna design for triple-band biotelemetry communication,” IEEE Trans. Antennas Propag, Vol. 59, no. 7, pp. 2646–2653, Jul. 2011. doi: 10.1109/TAP.2011.2152317
  • M. Haerinia, and S. Noghanian, “A printed wearable dual-band antenna for wireless power transfer,” Sensors, Vol. 19, no. 1732, pp. 1–10, 2019.
  • M. K. Hosain, A. Z. Kouzani, M. F. Samad, and S. J. Tye, “A miniature energy harvesting rectenna for operating a head-mountable deep brain stimulation device,” IEEE Access, Vol. 3, pp. 223–234, 2015. doi: 10.1109/ACCESS.2015.2414411
  • A. Abdi, and H. Aliakbarian, “A miniaturized UHF-band rectenna for power transmission to deep-body implantable devices,” Cardiovascular Devices and Systems, Vol. 7, pp. 1900311–1900321, 2019.
  • O. M. Sanusi, F. A. Ghaffar, A. Shamim, M. Vaseem, Y. Wang, and L. Roy, “Development of a 2.45 GHz antenna for flexible compact radiation Dosimeter tags,” IEEE Trans. Antennas Propagation, Vol. 67, no. 8, pp. 5063–5072, Aug. 2019. doi: 10.1109/TAP.2019.2911647
  • M. Asif, “A novel RF-powered wireless pacing via a rectenna-based pacemaker and a wearable transmit-antenna array,” IEEE Access, Vol. 7, pp. 1139–1148, 2019. doi: 10.1109/ACCESS.2018.2885620
  • T. Karacolak, A. Z. Hood, and E. Topsakal, “Design of a dual-band implantable antenna and development of skin mimicking gels for continuous glucose monitoring,” IEEE Trans. Microwave Theory Tech, Vol. 56, no. 4, pp. 1001–1008, 2008. doi: 10.1109/TMTT.2008.919373
  • K. Zhang, “Near-field wireless power transfer to deep-tissue implants for biomedical applications,” IEEE Trans. Antennas Propag, Vol. 68, no. 2, pp. 1098–1106, Feb. 2020. doi: 10.1109/TAP.2019.2943424

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.