117
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

Optimum Design of an Adaptive Fuzzy Controller as Active Suspension for a Quarter-Car Model

ORCID Icon &

REFERENCES

  • C. Tang, L. He, and A. Khajepour, “Design and analysis of an integrated suspension tilting mechanism for narrow urban vehicles,” Mech. Mach. Theory., Vol. 120, pp. 225–38, 2018. doi: 10.1016/j.mechmachtheory.2017.09.025
  • A. G. Mohite, and A. C. Mitra, “Development of linear and non-linear vehicle suspension model,” Mater. Today Proc., Vol. 5, pp. 4317–26, 2018. doi: 10.1016/j.matpr.2017.11.697
  • G. Yan, M. Fang, and J. Xu, “Analysis and experiment of time-delayed optimal control for vehicle suspension system,” J. Sound. Vib., Vol. 446, pp. 144–58, 2019. doi: 10.1016/j.jsv.2019.01.015
  • D. Cantero, P. McGetrick, C. W. Kim, and E. Obrien, “Experimental monitoring of bridge frequency evolution during the passage of vehicles with different suspension properties,” Eng. Struct., Vol. 187, pp. 209–19, 2019. doi: 10.1016/j.engstruct.2019.02.065
  • C. Cai, Q. He, S. Zhu, W. Zhai, and M. Wang, “Dynamic interaction of suspension-type monorail vehicle and bridge: numerical simulation and experiment,” Mech. Syst. Signal. Process., Vol. 118, pp. 388–407, 2019. doi: 10.1016/j.ymssp.2018.08.062
  • M. Bouazara. “Etude et anaslyse de la suspension active et semi-active des vehicules routters,” Ph.D. thesis, University Laval, Canada, 1997.
  • Y. Hu, M. Z. Q. Chen, and Z. Shu, “Passive vehicle suspensions employing inerters with multiple performance requirements,” J. Sound. Vib., Vol. 333, no. 8, pp. 2212–25, 2014. doi: 10.1016/j.jsv.2013.12.016
  • T. Xu, M. Liang, C. Li, and S. Yang, “Design and analysis of a shock absorber with variable moment of inertia for passive vehicle suspensions,” J. Sound. Vib., Vol. 355, pp. 66–85, 2015. doi: 10.1016/j.jsv.2015.05.035
  • B. Gadhvi, V. Savsani, and V. Patel, “Multi-objective optimization of vehicle passive suspension system using NSGA-II, SPEA2 and PESA-II,” Proc.Technol., Vol. 23, pp. 361–8, 2016. doi: 10.1016/j.protcy.2016.03.038
  • G. D. Shelke, A. C. Mitra, and V. R. Varude, “Validation of simulation and analytical model of nonlinear passive vehicle suspension system for quarter car,” Mater. Today Proc., Vol. 5, no. 9, pp. 19294–302, 2018. doi: 10.1016/j.matpr.2018.06.288
  • L. Sun, and X. Wang, “Nonlinear control for semi-active suspension with input constraints,” IFAC-PapersOnLine, Vol. 51, no. 31, pp. 131–5, 2018. doi: 10.1016/j.ifacol.2018.10.024
  • H. Pang, F. Liu, and Z. Xu, “Variable universe fuzzy control for vehicle semi-active suspension system with MR damper combining fuzzy neural network and particle swarm optimization,” Neurocomputing, Vol. 306, no. 6, pp. 130–40, 2018. doi: 10.1016/j.neucom.2018.04.055
  • X. Ma, P. K. Wong, and J. Zhao, “Practical multi-objective control for automotive semi-active suspension system with nonlinear hydraulic adjustable damper,” Mech. Syst. Signal. Process., Vol. 117, pp. 667–88, 2019. doi: 10.1016/j.ymssp.2018.08.022
  • J. Wu, H. Zhou, Z. Liu, and M. Gu, “A load-dependent PWA-H∞ controller for semi-active suspensions to exploit the performance of MR dampers,” Mech. Syst. Signal. Process., Vol. 127, pp. 441–62, 2019. doi: 10.1016/j.ymssp.2019.03.018
  • M. M. Morato, M. Q. Nguyen, O. Sename, and L. Dugard, “Design of a fast real-time LPV model predictive control system for semi-active suspension control of a full vehicle,” J. Franklin Inst., Vol. 356, no. 3, pp. 1196–224, 2019. doi: 10.1016/j.jfranklin.2018.11.016
  • M. J. Mahmoodabadi, and S. M. Mortazavi Yazdi. Multi-objective Genetic Optimization of Vehicle Suspension Models: Optimum Design of Vehicle Suspension Systems. Lambert Academic Publishing, 2016. ISBN-13:978-3659927126.
  • G. Wang, M. Chadli, H. Chen, and Z. Zhou, “Event-triggered control for active vehicle suspension systems with network-induced delays,” J. Franklin Inst., Vol. 356, no. 1, pp. 147–72, 2019. doi: 10.1016/j.jfranklin.2018.10.012
  • G. I. Y. Mustafa, H. P. Wang, and Y. Tian, “Vibration control of an active vehicle suspension systems using optimized model-free fuzzy logic controller based on time delay estimation,” Adv. Eng. Softw., Vol. 127, pp. 141–9, 2019. doi: 10.1016/j.advengsoft.2018.04.009
  • J. Wang, F. Jin, L. Zhou, and P. Li, “Implementation of model-free motion control for active suspension systems,” Mech. Syst. Signal. Process., Vol. 119, pp. 589–602, 2019. doi: 10.1016/j.ymssp.2018.10.004
  • H. Pang, Y. Wang, X. Zhang, and Z. Xu, “Robust state-feedback control design for active suspension system with time-varying input delay and wheelbase preview information,” J. Franklin Inst., Vol. 356, no. 4, pp. 1899–923, 2019. doi: 10.1016/j.jfranklin.2019.01.011
  • X. Shao, F. Naghdy, and H. Du, “Reliable fuzzy H∞ control for active suspension of in-wheel motor driven electric vehicles with dynamic damping,” Mech. Syst. Signal. Process., Vol. 87, pp. 365–83, 2017. doi: 10.1016/j.ymssp.2016.10.032
  • S. D. Nguyen, H. V. Ho, T. T. Nguyen, N. T. Truong, and T. I. Seo, “Novel fuzzy sliding controller for MRD suspensions subjected to uncertainty and disturbance,” Eng. Appl. Artif. Intell., Vol. 61, pp. 65–76, 2017. doi: 10.1016/j.engappai.2017.03.002
  • D. Ning, S. Sun, F. Zhang, H. Du, W. Li, and B. Zhang, “Disturbance observer based Takagi-Sugeno fuzzy control for an active seat suspension,” Mech. Syst. Signal. Process., Vol. 93, pp. 515–30, 2017. doi: 10.1016/j.ymssp.2017.02.029
  • H. Sun, Y. Li, K. Xu, and S. Tong, “Fuzzy adaptive backstepping control for a class of active suspension systems,” IFAC-PapersOnLine, Vol. 51, no. 31, pp. 136–41, 2018. doi: 10.1016/j.ifacol.2018.10.025
  • J. Mrazgua, E. H. Tisssir, and M. Ouahi, “Fuzzy fault-tolerant H∞ control approach for nonlinear active suspension systems with actuator failure,” Procedia. Comput. Sci., Vol. 148, pp. 465–74, 2019. doi: 10.1016/j.procs.2019.01.059
  • T. Zhao, and D. Songyi, “State feedback control for interval type-2 fuzzy systems with time-varying delay and unreliable communication links,” IEEE Trans. Fuzzy Syst., Vol. 26, no. 2, pp. 951–66, 2017. doi: 10.1109/TFUZZ.2017.2699947
  • T. Zhao, L. Jiahao, and D. Songyi, “Finite-time control for interval type-2 fuzzy time-delay systems with norm-bounded uncertainties and limited communication capacity,” Inf. Sci., Vol. 483, pp. 153–73, 2019. doi: 10.1016/j.ins.2019.01.044
  • T. Zhao, H. Mobing, and D. Songyi, “Stability and stabilization of TS fuzzy systems with two additive time-varying delays,” Inf. Sci., Vol. 494, pp. 174–92, 2019. doi: 10.1016/j.ins.2019.04.057
  • T. Zhao, H. Mobing, and D. Songyi, “Robust stability and stabilization conditions for nonlinear networked control systems with network-induced delay via TS fuzzy model,” IEEE Trans. Fuzzy Syst. 2019.
  • T. Zhao, C. Chengsen, and D. Songyi, “Local stability and stabilization of uncertain nonlinear systems with two additive time-varying delays,” Commun. Nonlinear Sci. Numer. Simul., Vol. 83, pp. 105097, 2020. doi: 10.1016/j.cnsns.2019.105097
  • M. Aghaie, and S. M. Mahmoudi, “Multi objective loading pattern optimization of PWRs with fuzzy logic controller based gravitational search algorithm,” Nucl. Eng. Des., Vol. 322, pp. 1–13, 2017. doi: 10.1016/j.nucengdes.2017.06.036
  • C. Li, Y. Mao, J. Zhou, N. Zhang, and X. An, “Design of a fuzzy-PID controller for a nonlinear hydraulic turbine governing system by using a novel gravitational search algorithm based on Cauchy mutation and mass weighting,” Appl. Soft. Comput., Vol. 52, pp. 290–305, 2017. doi: 10.1016/j.asoc.2016.10.035
  • A. Farokhi, and M. J. Mahmoodabadi, “Optimal fuzzy inverse dynamics control of a parallelogram mechanism based on a new multi-objective PSO,” Cogent Eng., Vol. 5, no. 1, pp. 1–20, 2018. doi: 10.1080/23311916.2018.1443675
  • M. Javanbakht, and M. J. Mahmoodabadi, “Moving least square online predictive model for two degree of freedom suspension system using optimal adaptive fuzzy controller,” Modares Mech. Eng., Vol. 18, no. 3, pp. 19–28, 2018.
  • Y. Zhou, F. Miao, and Q. Luo, “Symbiotic organisms search algorithm for optimal evolutionary controller tuning of fractional fuzzy controllers,” Appl. Soft. Comput., Vol. 77, pp. 497–508, 2019. doi: 10.1016/j.asoc.2019.02.002
  • M. Javanbakht, and M. J. Mahmoodabadi, “Achieving more stringent levels of comfort via an adaptive fuzzy controller optimized by the gravitational search algorithm for a half-body car model,” Int. J. Acoust. Vib, Vol. 24, no. 3, pp. 567–77, 2019. doi: 10.20855/jav.2019.24.31399
  • Z. Chen, X. Yuan, Y. Yuan, X. Lei, and B. Zhang, “Parameter estimation of fuzzy sliding mode controller for hydraulic turbine regulating system based on HICA algorithm,” Renew. Energy, Vol. 133, pp. 551–65, 2019. doi: 10.1016/j.renene.2018.10.061
  • M. J. Mahmoodabadi, F. Farhadi, and S. Sampour, “Firefly algorithm based optimum design of vehicle suspension systems,” Int. J. Dyn. Control, Vol. 7, no. 1, pp. 134–46, 2019. doi: 10.1007/s40435-018-0453-8
  • E. Rashedi, H. Nezamabadi-pour, and S. Saryazdi, “GSA: a gravitational search algorithm,” Inf. Sci., Vol. 179, pp. 2232–48, 2009. doi: 10.1016/j.ins.2009.03.004
  • L. X. Wang. A Course in Fuzzy Systems and Control. Prentice-Hall International, Inc, 1997. ISBN: 0-13-593005-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.