97
Views
2
CrossRef citations to date
0
Altmetric
Review Articles

Trajectory Tracking of Nonlinear Unmanned Rotorcraft Based on Polytopic Modeling and State Feedback Control

ORCID Icon, ORCID Icon & ORCID Icon

References

  • C. L. Castillo, W. Moreno, and K. P. Valavanis, “Unmanned helicopter waypoint trajectory tracking using model predictive control,” in 2007 Mediterranean Conference on Control and Automation, MED, 2007.
  • C. Liu, W. H. Chen, and J. Andrews, “Trajectory tracking of small helicopters using explicit nonlinear MPC and DOBC,” in IFAC Proceedings Volumes (IFAC-PapersOnline), 2011, vol. 44, no. 1 PART 1, pp. 1498–1503.
  • C. Liu, W. H. Chen, and J. Andrews, “Tracking control of small-scale helicopters using explicit nonlinear MPC augmented with disturbance observers,” Control Eng. Pract., Vol. 20, no. 3, pp. 258–268, 2012. doi:10.1016/j.conengprac.2011.10.015.
  • E. Frazzoli, M. A. Dahleh, and E. Feron, “ Trajectory tracking control design for autonomous helicopters using a backstepping algorithm,” in Proceedings of the American Control Conference, 2000, vol. 6, pp. 4102–4107.
  • B. Zhu and W. Huo, “Adaptive backstepping control for a miniature autonomous helicopter,” in Proceedings of the IEEE Conference on Decision and Control, 2011, no. April, pp. 5413–5418.
  • H. Lu, C. Liu, L. Guo, and W. H. Chen, “Flight control design for small-scale helicopter using disturbance- observer-based backstepping,” J. Guid. Control. Dyn., Vol. 38, no. 11, pp. 2235–2240, 2015. doi:10.2514/1.G001196.
  • F. Kendoul, I. Fantoni, and R. Lozano, “Modeling and control of a small autonomous aircraft having two tilting rotors,” IEEE Trans. Robot., Vol. 22, no. 6, pp. 1297–1302, 2006. doi:10.1109/TRO.2006.882956.
  • R. Mahony, and T. Hamel, “Robust trajectory tracking for a scale model autonomous helicopter,” Int. J. Robust Nonlinear Control, Vol. 14, no. 12, pp. 1035–1059, 2004. doi: 10.1002/rnc.931
  • L. Marconi, and R. Naldi, “Robust full degree-of-freedom tracking control of a helicopter,” Automatica. (Oxf), Vol. 43, no. 11, pp. 1909–1920, 2007. doi: 10.1016/j.automatica.2007.03.028
  • Y. He, H. Pei, and T. Sun, “Robust tracking control of helicopters using backstepping with disturbance observers,” Asian J. Control, Vol. 16, no. 5, pp. 1387–1402, 2014. doi:10.1002/asjc.827.
  • M. D. Takahashi, “H∞ helicopter flight control law design with and without rotor state feedback,” Guid. Navig. Control Conf., Vol. 17, no. 6, pp. 1323–1335, 1993. doi:10.2514/3.21340.
  • R. Kureemun, D. J. Walker, B. Manimala, and M. Voskuijl, “Helicopter flight control law design using H∞ techniques,” in Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference, CDC-ECC ‘05, 2005, vol. 2005, pp. 1307–1312.
  • B. Kadmiry and D. Driankov, “Fuzzy Control for an Unmanned Helicopter,” Licentiate of Engineering, thesis, 2002.
  • B. Kadmiry, and D. Driankov, “A fuzzy gain-scheduler for the attitude control of an unmanned helicopter,” IEEE Trans. Fuzzy Syst., Vol. 12, no. 4, pp. 502–515, 2004. doi: 10.1109/TFUZZ.2004.832539.
  • S. K. Kannan and E. N. Johnson, “Adaptive trajectory based control for autonomous helicopters,” in AIAA/IEEE Digital Avionics Systems Conference - Proceedings, 2002, vol. 2.
  • R. Li, M. Chen, Q. Wu, and J. Liu, “Robust adaptive tracking control for unmanned helicopter with constraints,” in International Journal of Advanced Robotic Systems, Vol. 14, no. 3, pp. 1–12, 2017. doi:10.1177/1729881417712621.
  • P. Pounds, and A. Dollar, “Stability of helicopters in compliant contact under PD-PID control,” Robot. IEEE Trans., Vol. 30, pp. 1472–1486, 2014. doi:10.1109/TRO.2014.2363371.
  • X. Fang, and Y. Shang, “Trajectory tracking control for small-scale unmanned helicopters with mismatched disturbances based on a continuous sliding mode approach,” Int. J. Aerosp. Eng., Vol. 2019, pp. 1–15, 2019. doi:10.1155/2019/6235862.
  • D. Nodland, H. Zargarzadeh, and S. Jagannathan, “Neural network-based optimal control for trajectory tracking of a helicopter UAV,” in Proceedings of the IEEE Conference on Decision and Control, 2011, pp. 3876–3881.
  • H. Suprijono, and B. Kusumoputro, “Direct inverse control based on neural network for unmanned small helicopter attitude and altitude control,” J. Telecommun. Electron. Comput. Eng., Vol. 9, no. 2–2, pp. 99–102, 2017.
  • G. Wyeth, G. Buskey, and J. Roberts, “Flight control using an artificial neural network,” in Proceedings of the Australian, 2000, p. 2000.
  • A. Budiyono, and S. S. Wibowo, “Optimal tracking controller design for a small scale helicopter,” J. Bionic Eng., Vol. 4, no. 4, pp. 271–280, 2007. doi:10.1016/S1672-6529(07)60041-9.
  • N. Aldawoodi, “An approach to designing an unmanned helicopter autopilot using genetic algorithms and simulated annealing,” 2008.
  • F. Fahimi, and M. Saffarian, “The control point concept for nonlinear trajectory-tracking control of autonomous helicopters with fly-bar,” Int. J. Control, Vol. 84, no. 2, pp. 242–252, 2011. doi:10.1080/00207179.2010.549842.
  • J. G. Benítez-Morales, H. Rodríguez-Cortés, and R. Castro-Linares, “A new nonlinear controller for trajectory tracking of the longitudinal dynamics of a small scale helicopter,” J. Intell. Robot. Syst. Theory Appl., Vol. 73, no. 1–4, pp. 99–121, 2014. doi:10.1007/s10846-013-9971-y.
  • G. Yu, J. Li, D. Cabecinhas, R. Cunha, and C. Silvestre, “A nonlinear trajectory tracking controller for helicopters: design and experimental evaluation,” in IEEE Region 10 Annual International Conference, Proceedings/TENCON, 2016, vol. 2016-Janua, pp. 0–5.
  • A. Razzaghian, “Robust nonlinear control based on disturbance observer for a small-scale unmanned helicopter,” J. Nonlinear Anal. Appl., Vol. 2017, no. 2, pp. 122–131, 2017. doi:10.5899/2017/jnaa-00390.
  • “futurheli.” [Online]. Available: www.futurheli.com/5539-new-blade-mcpx-bl-brushless-bnf-e-flite-blh3980.html.
  • B. Ren, S. S. Ge, C. Chen, C.-H. Fua, and T. H. Lee. Modeling, control and Coordination of helicopter systems. New York, NY: Springer, 2012.
  • B. M. Chen, G. Cai, and T. H. Lee. Unmanned rotorcraft systems. New York: Springer, 2012.
  • B. Zhou, X. Lu, S. Tang, and Z. Zheng, “Nonlinear system identification and trajectory tracking control for a flybarless unmanned helicopter: theory and experiment,” Nonlinear Dyn. 2019. doi:10.1007/s11071-019-04923-9.
  • B. Mettler. Identification modeling and Characteristics of Miniature rotorcraft. New York: Springer Science + Business Media, LLC, 2003.
  • G. D. Padfield. Helicopter flight dynamics. 3rd ed. Chichester, UK: John Wiley & Sons, Ltd, 2008.
  • I. A. Raptis. Linear and Nonlinear Control of Unmanned Rotorcraft. Tampa, FL: University of South Florida, 2010.
  • M. A. Mnich, and R. K. Heffly. Minimum-Complexity Helicopter Simulation Math Model. Technical Report. Los Altos, CA: National Aeronautics and Space Administration: NASA, 1988.
  • J. S. Shamma, “Analisis and design of gain scheduled control system,” MIT, 1988.
  • C. Briat, “Robust control and observation of LPV time-delay systems corentin briat to cite this version,” Institut National Polytechnique de Grenoble- INPG, 2009.
  • L. V. Stephen Boyd, Convex Optimization, First publ. New York: Cambridge University, 2004.
  • J. W. Helton, S. McCullough, M. Putinar, and V. Vinnikov, “Convex matrix inequalities versus linear matrix inequalities,” IEEE Trans. Automat. Contr., Vol. 54, no. 5, pp. 952–964, 2009. doi: 10.1109/TAC.2009.2017087
  • Y. C. Dingyü Xue, Solving Applied Mathematical Problems with MATLAB, Vol. 112, no. 483. Boca Raton, FL: Taylor & Francis Group, LLC, 2009.
  • H.-H. Yu, G. Duan, LMIs in Control Systems: Analysis, Design and Applications. Boca Raton, FL: CRC Press, 2012.
  • Stephen Boyd, Eric Feron, Laurent El Ghaoui, Linear matrix inequalities in system and control theory, 206. Philadelphia, PA: SIAM, 1994.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.