117
Views
2
CrossRef citations to date
0
Altmetric
Review Articles

Correlation and Relief Attribute Rank-based Feature Selection Methods for Detection of Alcoholic Disorder Using Electroencephalogram Signals

ORCID Icon, ORCID Icon & ORCID Icon

References

  • U. R. Acharya, F. Molinari, S. V. Sree, S. Chattopadhyay, K. Ng, and J. S. Suri, “Automated diagnosis of epileptic EEG using entropies,” Biomed. Signal. Process. Control., Vol. 7, no. 4, pp. 401–8, 2012. doi: 10.1016/j.bspc.2011.07.007
  • Y. Lin, C. Wang, T. Jung, T. Wu, S. Jeng, J. Duann, and J. Chen, “EEG-based emotion recognition in music listening,” IEEE Trans. Biomed. Eng., Vol. 57, no. 7, pp. 1798–806, 2010. doi: 10.1109/TBME.2010.2048568
  • L. Fraiwan, K. Lweesy, N. Khasawneh, H. Wenz, and H. Dickhaus, “Automated sleep stage identification system based on time-frequency analysis of a single EEG channel and random forest classifier,” Comput. Methods Programs Biomed., Vol. 108, no. 1, pp. 10–19, 2012. doi: 10.1016/j.cmpb.2011.11.005
  • M. Ahmadlou, H. Adeli, and A. Adeli, “New diagnostic EEG markers of the Alzheimer’s disease using visibility graph,” J. Neural. Transm., Vol. 117, no. 9, pp. 1099–109, 2010. doi: 10.1007/s00702-010-0450-3
  • A. Sheikhani, H. Behnam, M. R. Mohammadi, M. Noroozian, and M. Mohammadi, “Detection of abnormalities for diagnosing of children with autism disorders using of quantitative electroencephalography analysis,” J. Med. Syst., Vol. 36, no. 2, pp. 957–63, 2012. doi: 10.1007/s10916-010-9560-6
  • S. Loo, and S. Makeig, “Clinical utility of EEG in attention-deficit/hyperactivity disorder: A research update,” Neurotherapeutics, Vol. 9, no. 3, pp. 569–87, 2012. doi: 10.1007/s13311-012-0131-z
  • U. R. Acharya, V. K. Sudarshan, H. Adeli, J. Santhosh, J. E. Koh, and A. Adeli, “Computer aided diagnosis of depression using EEG signals,” Eur. Neurol., Vol. 73, no. 5–6, pp. 329–36, 2015. doi: 10.1159/000381950
  • U. R. Acharya, S. Bhat, H. Adeli, and A. Adeli, “Computer-aided diagnosis of alcoholism-related EEG signals,” Epilepsy. Behav., Vol. 41, pp. 257–63, 2014. doi: 10.1016/j.yebeh.2014.10.001
  • “Global status report on alcohol and health 2018,” WHO, 21st septemper 2018. [Online]. Available: https://www.who.int/news-room/detail/21-09-2018-harmful-use-of-alcohol-kills-more-than-3-million-people-each-year–most-of-them-men. [Accessed 2/7/19 JULY 2019].
  • C. P. Coutin, R. Y. Moreno, and F. Vergara, “Clinical correlates of quantitative EEG alterations in alcoholic patients,” Clin. Neurophysiol., Vol. 117, no. 4, pp. 740–51, 2006. doi: 10.1016/j.clinph.2005.12.021
  • F. Lotte. “Guide to brain-computer music interfacing,” in A Tutorial on EEG Signal-Processing Techniques for Mental-State Recognition in Brain Computer Interfaces. E. Miranda and J. Castet, Eds. London: Springer, 2014, pp. 133–61.
  • M. Rangaswamy, B. Porjesz, D. B. Chorlian, K. Choi, K. A. Jones, K. Wang, J. Rohrbaugh, S. O'Connor, S. Kuperman, and T. Reich, “Theta power in the EEG of alcoholics,” Alcohol: Clin. Exp. Res., Vol. 27, no. 4, pp. 607–15, 2003. doi: 10.1111/j.1530-0277.2003.tb04397.x
  • O. Faust, U. R. Acharya, A. R. Allen, and C. Lin, “Analysis of EEG signals during epileptic and alcoholic states using AR modeling techniques,” IRBM, Vol. 29, no. 1, pp. 44–52, 2008. doi: 10.1016/j.rbmret.2007.11.003
  • O. Faust, U. R. Acharya, H. Adeli, and A. Adeli, “Wavelet-based EEG processing for computer-aided seizure detection and epilepsy diagnosis,” Seizure, Vol. 26, pp. 56–64, 2015. doi: 10.1016/j.seizure.2015.01.012
  • G. G. Rigatos, “Adaptive fuzzy control for differentially flat MIMO nonlinear dynamical systems,” Integr. Comput. Aided. Eng., Vol. 20, no. 2, pp. 111–26, 2013. doi: 10.3233/ICA-130421
  • A. Anuragi, and D. S. Sisodia, “Alcohol use disorder detection using EEG signal features and flexible analytical wavelet transform,” Biomed. Signal. Process. Control., Vol. 52, pp. 384–93, 2019. doi: 10.1016/j.bspc.2018.10.017
  • M. Musselman, and D. Djurdjanovic, “Time-frequency distributions in the classification of epilepsy from EEG signals,” Expert. Syst. Appl., Vol. 39, no. 13, pp. 11413–22, 2012. doi: 10.1016/j.eswa.2012.04.023
  • A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, “Determining Lyapunov exponents from a time series,” Physica D, Vol. 16, no. 3, pp. 285–317, 1985. doi: 10.1016/0167-2789(85)90011-9
  • C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J., Vol. 27, no. 3, pp. 379–423, 1948. doi: 10.1002/j.1538-7305.1948.tb01338.x
  • S. M. Pincus, “Approximate entropy as a measure of system complexity,” Proc. Natl. Acad. Sci. U. S. A., Vol. 88, no. 6, pp. 2297–301, 1991. doi: 10.1073/pnas.88.6.2297
  • D. E. Lake, J. S. Richman, M. P. Griffin, and J. R. Moorman, ““Sample entropy analysis of neonatal heart rate variability,” Am. J. Physiol-Regul., Integr. Comp. Physiol., Vol. 283, no. 3, pp. R789–97, 2002. doi: 10.1152/ajpregu.00069.2002
  • R. Acharya, O. Faust, N. Kannathal, T. Chua, and S. Laxminarayan, “Non-linear analysis of EEG signals at various sleep stages,” Comput. Methods Programs Biomed., Vol. 80, no. 1, pp. 37–45, 2005. doi: 10.1016/j.cmpb.2005.06.011
  • P. Grassberger, and I. Procaccia, “Estimation of the Kolmogorov entropy from a chaotic signal,” Phys. Rev. A, Vol. 28, no. 4, pp. 2591, 1983. doi: 10.1103/PhysRevA.28.2591
  • S. H. Oh, Y. R. Lee, and H. N. Kim, “A novel EEG feature extraction method using Hjorth parameter,” Int. J. Electron. Electr. Eng., Vol. 2, no. 2, pp. 106–10, 2014. doi: 10.12720/ijeee.2.2.106-110
  • R. K. Saiki, D. H. Gelfand, S. Stoffel, S. J. Scharf, R. Higuchi, G. T. Horn, K. B. Mullis, and H. A. Erlich, “Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase,” Science, Vol. 239, no. 4839, pp. 487–91, 1988. doi: 10.1126/science.239.4839.487
  • A. Petrosian. “Kolmogorov complexity of finite sequences and recognition of different preictal EEG patterns,” in Proceedings Eighth IEEE Symposium on Computer-Based Medical SystemsProceedings Eighth IEEE Symposium on Computer-Based Medical Systems, IEEE, 1995, pp. 212–7.
  • W. Webber, R. P. Lesser, R. T. Richardson, and K. Wilson, “An approach to seizure detection using an artificial neural network (ANN),” Electroencephalogr. Clin. Neurophysiol., Vol. 98, no. 4, pp. 250–72, 1996. doi: 10.1016/0013-4694(95)00277-4
  • Y. P. Lin, C. H. Wang, T. L. Wu, S. K. Jeng, and J. H. Chen. “Support vector machine for EEG signal classification during listening to emotional music,” in 2008 IEEE 10th Workshop on Multimedia Signal Processing, IEEE, 2008, pp. 127–30.
  • S. Bavkar, B. Iyer, and S. Deosarkar. “Detection of alcoholism: An EEG hybrid features and ensemble subspace K-NN based approach,” in International Conference on Distributed Computing and Internet Technology, Springer, 2019, pp. 161–8.
  • W. Mumtaz, P. L. Vuong, L. Xia, A. S. Malik, and R. B. A. Rashid, “An EEG-based machine learning method to screen alcohol use disorder,” Cogn. Neurodyn., Vol. 11, no. 2, pp. 161–71, 2017. doi: 10.1007/s11571-016-9416-y
  • A. Aarabi, R. Fazel-Rezai, and Y. Aghakhani, “A fuzzy rule-based system for epileptic seizure detection in intracranial EEG,” Clin. Neurophysiol., Vol. 120, no. 9, pp. 1648–57, 2009. doi: 10.1016/j.clinph.2009.07.002
  • A. Anuragi, and D. S. Sisodia. “Alcoholism detection using support vector machines and centered correntropy features of brain EEG signals,” in 2017 International Conference on Inventive Computing and Informatics (ICICI), IEEE, 2017, pp. 1021–6.
  • L. Jiajie, K. Narasimhan, V. Elamaran, N. Arunkumar, M. Solarte, and G. Ramirez Gonzalez, “Clinical decision support system for alcoholism detection using the analysis of EEG signals,” IEEE. Access., Vol. 6, pp. 61457–61, 2018. doi: 10.1109/ACCESS.2018.2876135
  • N. Kannathal, U. R. Acharya, C. M. Lim, and P. Sadasivan, “Characterization of EEG – a comparative study,” Comput. Methods Programs Biomed., Vol. 80, no. 1, pp. 17–23, 2005. doi: 10.1016/j.cmpb.2005.06.005
  • U. R. Acharya, S. V. Sree, S. Chattopadhyay, and J. S. Suri, “Automated diagnosis of normal and alcoholic EEG signals,” Int. J. Neural Syst., Vol. 22, no. 3, pp. 1250011, 2012. doi: 10.1142/S0129065712500116
  • O. Faust, W. Yu, and N. A. Kadri, “Computer-based identification of normal and alcoholic EEG signals using wavelet packets and energy measures,” J. Mech. Med. Biol., Vol. 13, no. 3, pp. 1350033, 2013. doi: 10.1142/S0219519413500334
  • X. L. Zhang, H. Begleiter, B. Porjesz, W. Wang, and A. Litke, “Event related potentials during object recognition tasks,” Brain Res. Bull., Vol. 38, no. 6, pp. 531–8, 1995. doi: 10.1016/0361-9230(95)02023-5
  • J. G. Snodgrass, and M. Vanderwart, “A standardized set of 260 pictures: norms for name agreement, image agreement, familiarity, and visual complexity,” J. Exp. Psychol.: Hum. Learn. Mem., Vol. 6, no. 2, pp. 174, 1980.
  • J. S. Richman, and J. R. Moorman, “Physiological time-series analysis using approximate entropy and sample entropy,” Am. J. Physiol. Heart Circ. Physiol., Vol. 278, no. 6, pp. H2039–49, 2000. doi: 10.1152/ajpheart.2000.278.6.H2039
  • V. Srinivasan, C. Eswaran, and N. Sriraam, “Approximate entropy-based epileptic EEG detection using artificial neural networks,” IEEE Trans. Inf. Technol. Biomed., Vol. 11, no. 3, pp. 288–95, 2007. doi: 10.1109/TITB.2006.884369
  • B. Hjorth, “EEG analysis based on time domain properties,” Electroencephalogr. Clin. Neurophysiol., Vol. 29, no. 3, pp. 306–10, 1970. doi: 10.1016/0013-4694(70)90143-4
  • R. Pavlygina, D. Sakharov, and V. Davydov, “Spectral analysis of the human EEG during listening to musical compositions,” Hum. Physiol., Vol. 30, no. 1, pp. 54–60, 2004. doi: 10.1023/B:HUMP.0000013765.64276.e6
  • T. Inouye, K. Shinosaki, H. Sakamoto, S. Toi, S. Ukai, A. Iyama, Y. Katsuda, and M. Hirano, “Quantification of EEG irregularity by use of the entropy of the power spectrum,” Electroencephalogr. Clin. Neurophysiol., Vol. 79, no. 3, pp. 204–10, 1991. doi: 10.1016/0013-4694(91)90138-T
  • M. Martin, F. Pennini, and A. Plastino, “Fisher's information and the analysis of complex signals,” Phys. Lett. A, Vol. 256, no. 2–3, pp. 173–80, 1999. doi: 10.1016/S0375-9601(99)00211-X
  • F. Lotte, L. Bougrain, A. Cichocki, M. Clerc, M. Congedo, A. Rakotomamonjy, and F. Yger, “A review of classification algorithms for EEG-based brain-computer interfaces: a 10 year update,” J. Neural Eng., Vol. 15, no. 3, p. 031005 (28pp), 2018. doi: 10.1088/1741-2552/aab2f2
  • N. Hooda, and N. Kumar, “Cognitive Imagery classification of EEG signals using CSP-based feature selection method,” IETE Tech. Rev., pp. 1–12, 2019. DOI:10.1080/02564602.2019.1620138.
  • K. Kira, and L. A. Rendell. “A practical approach to feature selection,” in Machine Learning Proceedings, Elsevier, 1992, pp. 249–56.
  • M. A. Hall, and L. A. Smith. “Feature subset selection: a correlation based filter approach,” in Proceedings of the Fourth International Conference on Neural Information Processing and Intelligent Information Systems, Dunedin, 1997.
  • R. J. Urbanowicz, M. Meeker, W. La Cava, R. S. Olson, and J. H. Moore, “Relief-based feature selection: Introduction and Review,” J. Biomed. Inform., Vol. 85, pp. 189–203, (2018).
  • V. N. Vapnik, The nature of statistical learning theory, 2nd ed. New York: Springer, 1995, pp. 138–60.
  • T. Van Gestel, J. Suykens, B. De Moor, and J. Vandewalle. “Automatic relevance determination for least squares support vector machine regression,” in IJCNN'01.International Joint Conference on Neural Networks. Proceedings (Cat. No. 01CH37222), 2001.
  • J. A. Suykens, and J. Vandewalle, “Least squares support vector machine classifiers,” Neural Process. Lett., Vol. 9, no. 3, pp. 293–300, 1999. doi: 10.1023/A:1018628609742
  • J. M. Zurada, Introduction to artificial neural systems, Vol. 8. St. Paul, USA: West Publishing Company, 1992.
  • E. Fix, and J. L. Hodges Jr. “Discriminatory analysis-nonparametric discrimination: consistency properties,” 1951.
  • K. Hechenbichler, and K. Schliep. “Weighted k-nearest-neighbor techniques and ordinal classification,” 2004.
  • S. Patidar, R. B. Pachori, A. Upadhyay, and U. R. Acharya, “An integrated alcoholic index using tunable-Q wavelet transform based features extracted from EEG signals for diagnosis of alcoholism,” Appl. Soft. Comput., Vol. 50, pp. 71–8, 2017. doi: 10.1016/j.asoc.2016.11.002
  • M. Sharma, D. Deb, and U. R. Acharya, “A novel three-band orthogonal wavelet filter bank method for an automated identification of alcoholic EEG signals,” Applied Intelligence, Vol. 48, no. 5, pp. 1368–78, 2018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.