173
Views
5
CrossRef citations to date
0
Altmetric
Review Articles

A Weighted Voting Classifiers Ensemble for the Brain Tumors Classification in MR Images

, &

References

  • A. P. James, and B. V. Dasarathy, “Medical image fusion: A survey of the state of the art,” Inf. Fusion, Vol. 19, pp. 4–19, 2014. doi: 10.1016/j.inffus.2013.12.002
  • M. Saini, S. Saini, P. Tripathi, K. Saini, and M. Nath, “A survey on brain tumor identification through medical images,” Int. J. Adv. Res. Comput. Sci., Vol. 8, pp. 406–408, 2017. doi: 10.26483/ijarcs.v8i7.4296
  • Y. Megersa, and G. Alemu, “Brain tumor detection and segmentation using hybrid intelligent algorithms,” in AFRICON 2015, 2015, pp. 1–8.
  • J. Kuruvilla, and K. Gunavathi, “Lung cancer classification using neural networks for CT images,” Comput. Methods Programs Biomed., Vol. 113, pp. 202–209, 2014. doi: 10.1016/j.cmpb.2013.10.011
  • P. Afshar, A. Mohammadi, and K. N. Plataniotis, “Brain tumor type classification via capsule networks,” in 2018 25th IEEE International Conference on Image Processing (ICIP), 2018, pp. 3129–3133.
  • N. Abiwinanda, M. Hanif, S. T. Hesaputra, A. Handayani, and T. R. Mengko, “Brain tumor classification using convolutional neural network,” in World Congress on Medical Physics and Biomedical Engineering 2018, 2019, pp. 183–189.
  • M. R. Ismael, and I. Abdel-Qader, “Brain tumor classification via statistical features and back-propagation neural network,” in 2018 IEEE International Conference on Electro/Information Technology (EIT), 2018, pp. 0252–0257.
  • A. K. Anaraki, M. Ayati, and F. Kazemi, “Magnetic resonance imaging-based brain tumor grades classification and grading via convolutional neural networks and genetic algorithms,” Biocybern. Biomed. Eng., Vol. 39, pp. 63–74, 2019. doi: 10.1016/j.bbe.2018.10.004
  • R. Zia, P. Akhtar, and A. Aziz, “A new rectangular window based image cropping method for generalization of brain neoplasm classification systems,” Int. J. Imaging Syst. Technol., Vol. 28, pp. 153–162, 2018. doi: 10.1002/ima.22266
  • C. Wan, M. Ye, C. Yao, and C. Wu, “Brain MR image segmentation based on Gaussian filtering and improved FCM clustering algorithm,” in 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), 2017, pp. 1–5.
  • M. Sajjad, S. Khan, K. Muhammad, W. Wu, A. Ullah, and S. W. Baik, “Multi-grade brain tumor classification using deep CNN with extensive data augmentation,” J. Comput. Sci., Vol. 30, pp. 174–182, 2019. doi: 10.1016/j.jocs.2018.12.003
  • A. Panda, T. K. Mishra, and V. G. Phaniharam, “Automated brain tumor detection using discriminative clustering based MRI segmentation,” In Smart Innovations in Communication and Computational Sciences. Advances in Intelligent Systems and Computing, Vol. 851, S. Tiwari, M. Trivedi, K. Mishra, A. Misra, K. Kumar, Ed. Singapore: Springer.
  • R. Lavanyadevi, M. Machakowsalya, J. Nivethitha, and A. N. Kumar, “Brain tumor classification and segmentation in MRI images using PNN,” in 2017 IEEE International Conference on Electrical, Instrumentation and Communication Engineering (ICEICE), 2017, pp. 1–6.
  • T. Keerthana, and S. Xavier, “An intelligent system for early assessment and classification of brain tumor,” in 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT), 2018, pp. 1265–1268.
  • A. Jagan, “A new approach for segmentation and detection of brain tumor in 3D brain MR imaging,” in 2018 Second International Conference on Electronics, Communication and Aerospace Technology (ICECA), 2018, pp. 1230–1235.
  • T. S. Sazzad, K. T. Ahmmed, M. U. Hoque, and M. Rahman, “Development of automated brain tumor identification using MRI images,” in 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE), 2019, pp. 1–4.
  • J. Cheng. Brain Tumor Dataset. 2017. Available: https://figshare.com/articles/brain_tumor_dataset/1512427.
  • N. Chun-Yu, L. Shu-Fen, and Q. Ming, “Research on removing noise in medical image based on median filter method,” in 2009 IEEE International Symposium on IT in Medicine&Education, 2009.
  • J. Benesty, J. Chen, and Y. Huang, “Study of the widely linear Wiener filter for noise reduction,” in 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, 2010, pp. 205–208.
  • H. B. Nandpuru, S. Salankar, and V. Bora, “MRI brain cancer classification using support vector machine,” in Electrical, Electronics and Computer Science (SCEECS), 2014 IEEE Students’ Conference on, 2014, pp. 1–6.
  • I. El-Naqa, Y. Yang, M. N. Wernick, N. P. Galatsanos, and R. M. Nishikawa, “A support vector machine approach for detection of microcalcifications,” IEEE Trans. Med. Imaging, Vol. 21, pp. 1552–1563, 2002. doi: 10.1109/TMI.2002.806569
  • A. M. Khuzi, R. Besar, W. W. Zaki, and N. Ahmad, “Identification of masses in digital mammogram using gray level co-occurrence matrices,” Biomed. Imaging Intervention J., Vol. 5, pp. 1–13, 2009.
  • T. Torheim, et al., “Classification of dynamic contrast enhanced MR images of cervical cancers using texture analysis and support vector machines,” IEEE Trans. Med. Imaging, Vol. 33, pp. 1648–1656, 2014. doi: 10.1109/TMI.2014.2321024
  • R. M. Haralick, and K. Shanmugam, “Textural features for image classification,” IEEE Trans. Syst. Man Cybern., Vol. SMC-3, pp. 610–621, Nov. 1973. doi: 10.1109/TSMC.1973.4309314
  • X. Tang. “Dominant run-length method for image classification,” Woods Hole Oceanographic Institution, 1997.
  • X. Tang, “Texture information in run-length matrices,” IEEE Trans. Image Process., Vol. 7, pp. 1602–1609, 1998. doi: 10.1109/83.725367
  • U. Avni, H. Greenspan, E. Konen, M. Sharon, and J. Goldberger, “X-ray categorization and retrieval on the organ and pathology level, using patch-based visual words,” IEEE Trans. Med. Imaging, Vol. 30, pp. 733–746, 2011. doi: 10.1109/TMI.2010.2095026
  • A. Bosch, X. Munoz, A. Oliver, and J. Marti, “Modeling and classifying breast tissue density in mammograms,” in 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06), 2006, pp. 1552–1558.
  • W. Yang, et al., “Content-based retrieval of brain tumor in contrast-enhanced MRI images using tumor margin information and learned distance metric,” Med. Phys., Vol. 39, pp. 6929–6942, 2012. doi: 10.1118/1.4754305
  • J. C. Van Gemert, C. G. Snoek, C. J. Veenman, A. W. Smeulders, and J.-M. Geusebroek, “Comparing compact codebooks for visual categorization,” Comput. Vis. Image. Underst., Vol. 114, pp. 450–462, 2010. doi: 10.1016/j.cviu.2009.08.004
  • M. Varma, and A. Zisserman, “A statistical approach to material classification using image patch exemplars,” IEEE Trans. Pattern Anal. Mach. Intell., Vol. 31, pp. 2032–2047, 2009. doi: 10.1109/TPAMI.2008.182
  • E. Alpaydin. Introduction to Machine Learning. Rochester, MI: MIT press, 2014.
  • A. Gersho and R. M. Gray, Vector Quantization and Signal Compression. Vol. 159. Warsaw: Springer Science & Business Media, 2012.
  • S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories,” in Null, 2006, pp. 2169–2178.
  • G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to Statistical Learning. Vol. 112. Hoboken, NJ: Springer, 2013.
  • M. L. Bermingham, et al., “Application of high-dimensional feature selection: evaluation for genomic prediction in man,” Sci. Rep., Vol. 5, p. 10312, 2015. doi: 10.1038/srep10312
  • R. Storn, and K. Price, “Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces,” Journal of Global Optimization, Vol. 11, pp. 341–359, 1997. doi: 10.1023/A:1008202821328
  • Y. Marinakis, G. Dounias, and J. Jantzen, “Pap smear diagnosis using a hybrid intelligent scheme focusing on genetic algorithm based feature selection and nearest neighbor classification,” Comput. Biol. Med., Vol. 39, pp. 69–78, 2009. doi: 10.1016/j.compbiomed.2008.11.006
  • A. Padma, and R. Sukanesh, “A wavelet based automatic segmentation of brain tumor in CT images using optimal statistical texture features,” International Journal of Image Processing, Vol. 5, pp. 552–563, 2011.
  • R. Kohavi, “A study of cross-validation and bootstrap for accuracy estimation and model selection,” in Ijcai, 1995, pp. 1137–1145.
  • F. Latifoğlu, K. Polat, S. Kara, and S. Güneş, “Medical diagnosis of atherosclerosis from Carotid Artery Doppler signals using principal component analysis (PCA), k-NN based weighting pre-processing and artificial Immune recognition system (AIRS),” J. Biomed. Inform., Vol. 41, pp. 15–23, 2008. doi: 10.1016/j.jbi.2007.04.001
  • N. Yuvaraj, and P. Vivekanandan, “An efficient SVM based tumor classification with symmetry non-negative matrix factorization using gene expression data,” in Information Communication and Embedded Systems (ICICES), 2013 International Conference on, 2013, pp. 761–768.
  • A. Barla, F. Odone, and A. Verri, “Histogram intersection kernel for image classification,” in Proceedings 2003 International Conference on Image Processing (Cat. No. 03CH37429), 2003, pp. III–513.
  • U. K. Sikdar, A. Ekbal, and S. Saha, “MODE: multiobjective differential evolution for feature selection and classifier ensemble,” Soft. comput., Vol. 19, pp. 3529–3549, 2015. doi: 10.1007/s00500-014-1565-5
  • A. Lauric and S. Frisken, “Soft segmentation of CT brain data,” Tufts University, 2007.
  • R. Ganesan, and S. Radhakrishnan, “Segmentation of computed tomography brain images using genetic algorithm,” Int. J. Soft Comput., Vol. 4, pp. 157–161, 2009.
  • N. Sharma, A. K. Ray, S. Sharma, K. Shukla, S. Pradhan, and L. M. Aggarwal, “Segmentation and classification of medical images using texture-primitive features: Application of BAM-type artificial neural network,” J. Med. Phys., Vol. 33, p. 119, 2008. doi: 10.4103/0971-6203.42763
  • A. Padma, and R. Sukanesh, “Automatic classification and segmentation of brain tumor in CT images using optimal dominant gray level run length texture features,” Int. J. Adv. Comput. Sci. Appl., Vol. 2, pp. 53–59, 2011.
  • A. P. Nanthagopal, and R. S. Rajamony, “A region-based segmentation of tumour from brain CT images using nonlinear support vector machine classifier,” J. Med. Eng. Technol., Vol. 36, pp. 271–277, 2012. doi: 10.3109/03091902.2012.682638
  • M. Kubat, An Introduction to Machine Learning. Vol. 681. London: Springer, 2015.
  • K. Markham. “Simple guide to confusion matrix terminology,” data school, 2014.
  • J. Cheng, et al., “Enhanced performance of brain tumor classification via tumor region augmentation and partition,” PloS one, Vol. 10, pp. e0140381, 2015. doi: 10.1371/journal.pone.0140381
  • P. Afshar, K. N. Plataniotis, and A. Mohammadi. “Capsule networks for brain tumor classification based on MRI images and course tumor boundaries,” arXiv preprint arXiv:1811.00597, 2018.
  • Y. Zhou, et al., “Holistic brain tumor screening and classification based on DenseNet and Recurrent neural network,” in International MICCAI Brainlesion Workshop, 2018, pp. 208–217.
  • M. R. Ismael. “Hybrid Model-Statistical Features and Deep Neural Network for Brain Tumor Classification in MRI Images,” 2018.
  • L. Miralles-Pechuán, D. Rosso, F. Jiménez, and J. M. García, “A methodology based on deep learning for advert value calculation in CPM, CPC and CPA networks,” Soft. Comput., Vol. 21, pp. 651–665, 2017. doi: 10.1007/s00500-016-2468-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.