84
Views
1
CrossRef citations to date
0
Altmetric
Articles

Relative Study on MM-Wave Performance of Group IV-IV and Group III-V Materials Based IMPATT Sources

, ORCID Icon &

References

  • S. M. Sze. Physics of Semiconductor Devices, 2nd ed. New York, NY: Wiley, 1981.
  • G. Gibbons. Avalanche-diode Microwave Oscillators. Oxford: Oxford University Press, 1973, pp. 13 and 53.
  • R. D. Hogg, “Applications of IMPATT diodes as RF sources for microwave EPR spectroscopy,” Rev. Sci. Instrum., Vol. 44, pp. 582–4, 1973. doi: 10.1063/1.1686188
  • S. Myers and R. Z. Ramos, “Application of W-band, Doppler radar to railgun velocity measurements,” Procedia. Eng., Vol. 58, pp. 369–76, 2013. doi: 10.1016/j.proeng.2013.05.042
  • W. W. Gray, L. Kikushima, N. P. Morentc, and R. J. Wagner, “Applying IMPATT power sources to modern microwave systems,” IEEE J. Solid-State Circuits, Vol. 4, pp. 409–13, 1969. doi: 10.1109/JSSC.1969.1050046
  • Y. Chang, J. M. Hellum, J. A. Paul, and K. P. Weller. “Millimeter-wave IMPATT sources for communication applications,” IEEE MTT-S International Microwave Symposium Digest, 1977, pp. 216–9.
  • T. A. Midford and R. L. Bernick, “Millimeter wave CW IMPATT diodes and oscillators,” IEEE Trans. Microwave Theory Tech., Vol. 27, pp. 483–92, 1979. doi: 10.1109/TMTT.1979.1129653
  • J. F. Luy, A. Casel, W. Behr, and E. Kasper, “A 90-GHz double-drift IMPATT diode made with Si MBE,” IEEE Trans. Electron Devices, Vol. 34, pp. 1084–9, 1987. doi: 10.1109/T-ED.1987.23049
  • M. Wollitzer, J. Buchler, F. Schafflr, and J. F. Luy, “D-band Si-IMPATT diodes with 300 mW CW output power at 140 GHz,” Electron. Lett., Vol. 32, pp. 122–3, 1996. doi: 10.1049/el:19960088
  • C. Dalle, P. Rolland, and G. Lieti, “Flat doping profile double-drift silicon IMPATT for reliable CW high power high-efficiency generation in the 94-GHz window,” IEEE Trans. Electron Devices, Vol. 37, pp. 227–36, 1990. doi: 10.1109/16.43820
  • M. Luschas, R. Judaschke, and J. F. Luy. “Measurement results of packaged millimeter-wave silicon IMPATT diodes,” in Proc. of 27th International Conference on Infrared and Millimeter Waves, Conference Digest, 2002, pp. 135–6.
  • M. Luschas, R. Judaschke, and J. F. Luy. “Simulation and measurement results of 150 GHz integrated silicon IMPATT diodes,” in IEEE MTT-S International Microwave Symposium Digest, 2002, pp. 1269–72.
  • H. Eisele, C. C. Chen, G. O. Munns, and G. I. Haddad, “The potential of InP IMPATT diodes as high-power millimetre-wave sources: first experimental results,” IEEE MTT-S Int. Microwave Symp. Digest., Vol. 2, pp. 529–32, 1996.
  • A. Biswas, S. Sinha, A. Acharyya, A. Banerjee, S. Pal, H. Satoh, and H. Inokawa, “1.0 THz GaN IMPATT source: Effect of parasitic series resistance,” J. Infrared. Millim. Terahertz. Waves, Vol. 39, no. 10, pp. 954–74, 2018. doi: 10.1007/s10762-018-0509-z
  • A. Acharyya and J. P. Banerjee, “Prospects of IMPATT devices based on wide bandgap semiconductors as potential Terahertz sources,” Appl. Nanosci., Vol. 4, pp. 1–14, 2014. doi: 10.1007/s13204-012-0172-y
  • A. Acharyya and J. P. Banerjee, “Potentiality of IMPATT devices as terahertz source: An avalanche response time based approach to determine the upper cut-off frequency Limits,” IETE. J. Res., Vol. 59, no. 2, pp. 118–27, Mar.–Apr. 2013. doi: 10.4103/0377-2063.113029
  • L. Yuan, A. James, J. A. Cooper, M. R. Melloch, and K. J. Webb, “Experimental demonstration of a silicon carbide IMPATT oscillator,” IEEE Electron Device Lett., Vol. 22, pp. 266–8, 2001. doi: 10.1109/55.924837
  • K. V. Vassilevski, A. V. Zorenko, K. Zekentes, K. Tsagaraki, E. Bano, C. Banc, and A. Lebedev. “4H-SiC IMPATT diode fabrication and testing,” in Technical Digest of International Conference on SiC and Related Materials, Tsukuba, Japan, 2001, pp. 713–14.
  • W. N. Grant, “Electron and hole ionization rates in epitaxial Silicon,” Solid-State Electron., Vol. 16, pp. 1189–203, 1973. doi: 10.1016/0038-1101(73)90147-0
  • C. W. Kao, and C. R. Crowell, “Impact ionization by electrons and holes in InP,” Solid-State Electron., Vol. 23, pp. 881–91, 1980. doi: 10.1016/0038-1101(80)90106-9
  • I. Umebu, A. N. M. M. Chowdhury, and P. N. Robson, “Ionization coefficients measured in abrupt InP junction,” Appl. Phys. Lett., Vol. 36, pp. 302–3, 1980. doi: 10.1063/1.91470
  • K. Kunihiro, K. Kasahara, Y. Takahashi, and Y. Ohno, “Experimental evaluation of impact ionization coefficients in GaN,” IEEE Electron Device Lett., Vol. 20, no. 12, pp. 608–10, 1999. doi: 10.1109/55.806100
  • A. O. Konstantinov, Q. Wahab, N. Nordell, and U. Lindefelt, “Ionization rates and critical fields in 4H-silicon carbide,” Appl. Phys. Lett., Vol. 71, pp. 90–2, 1997. doi: 10.1063/1.119478
  • C. Canali, G. Ottaviani, and A. A. Quaranta, “Drift velocity of electrons and holes and associated Anisotropic Effects in Silicon,” J. Phys. Chem. Solids, Vol. 32, pp. 1707–20, 1971. doi: 10.1016/S0022-3697(71)80137-3
  • B. Kramer, and A. Micrea, “Determination of saturated electron velocity in GaAs,” Appl. Phys. Lett., Vol. 26, pp. 623–4, 1975. doi: 10.1063/1.88001
  • S. C. Shiyu, and G. Wang, “High-field properties of carrier transport in bulk wurtzite GaN: Monte Carlo perspective,” J. Appl. Phys., Vol. 103, pp. 703–8, 2008.
  • K. V. Vassilevski, K. Zekentes, A. V. Zorenko, and L. P. Romanov, “Experimental determination of electron drift velocity in 4H-SiC p+-n-n+ avalanche diodes,” IEEE Electron Device Lett., Vol. 21, pp. 485–7, 2000. doi: 10.1109/55.870609
  • “Electronic archive: New semiconductor materials, characteristics and properties.” Available: http://www.ioffe.ru/SVA/NSM/Semicond/index.html (last accessed on May 2020).
  • S. K. Roy, J. P. Banerjee, and S. P. Pati. “A computer analysis of the distribution of high frequency negative resistance in the depletion layer of IMPATT diodes,” in Proc. 4th Conf. on Num. Anal. of Semiconductor Devices (NASECODE IV), Dublin, Ireland, 1985, pp. 494–500.
  • A. Acharyya, S. Banerjee, and J. P. Banerjee, “Influence of skin effect on the series resistance of millimeter-wave of IMPATT devices,” J. Comput. Electron., Vol. 12, no. 3, pp. 511–25, 2013. doi: 10.1007/s10825-013-0470-y
  • A. Acharyya, S. Banerjee, and J. P. Banerjee, “A proposed Simulation technique to study the series resistance and related millimeter-wave properties of Ka-band Si IMPATTs from the electric field snap-shots,” Int. J. Microw. Wirel. Technol., Vol. 5, no. 1, pp. 91–100, 2013. doi: 10.1017/S1759078712000839
  • S. K. Roy, M. Sridharan, R. Ghosh, and B. B. Pal. “Computer method for the dc field and carrier current profiles in the IMPATT device starting from the field extremum in the depletion layer,” in Proc. of the 1st Conference on Numerical Analysis of Semiconductor Devices (NASECODE I), J. H. Miller, Ed., Dublin, Ireland, 1979, pp. 266–74.
  • J. Douglas, and Y. Yuan. “Finite difference methods for the transient behavior of a semiconductor device,” in IMA Preprint Series#286, Institute for Mathematics and Its Applications, University of Minnesota, Minnesota, 1987.
  • E. O. Kane, “Theory of tunneling,” Jr. Appl. Phys, Vol. 32, pp. 83–91, 1961. doi: 10.1063/1.1735965
  • H. Eisele, and G. I. Hadded, “Gaas TUNNETT diodes on diamond sink for 100 GHz and above,” IEEE Trans. MTT, Vol. MTT-43, no. 1, p. 210, 1995. doi: 10.1109/22.362989
  • G. N. Dash, “A new design approach for MITATT and TUNNETT mode devices,” Solid-State Electron., Vol. 38, pp. 1381–5, 1995. doi: 10.1016/0038-1101(94)00253-C
  • H. K. Gummel, and J. L. Blue, “A small-signal theory of avalanche noise in IMPATT diodes,” IEEE Trans. Electron Devices, Vol. 14, pp. 569–80, 1967. doi: 10.1109/T-ED.1967.16005
  • A. Acharyya, S. Banerjee, and J. P. Banerjee, “Effect of junction temperature on the large-signal properties of a 94 GHz silicon based double-drift region impact avalanche transit time device,” J. Semicond., Vol. 34, no. 2, p. 024001-12, 2013. doi: 10.1088/1674-4926/34/2/024001
  • S. M. Sze, and R. M. Ryder, “Microwave avalanche diodes,” Proc. IEEE, Vol. 59, pp. 1140–54, 1971. doi: 10.1109/PROC.1971.8360
  • A. Acharyya, A. Mallik, D. Banerjee, S. Ganguli, A. Das, S. Dasgupta, and J. P. Banerjee, “IMPATT devices based on group III-V compound semiconductors: Prospects as potential terahertz radiators,” HKIE Trans., Vol. 21, no. 3, pp. 135–47, 2014. doi: 10.1080/1023697X.2014.945231
  • A. Acharyya, J. Goswami, S. Banerjee, and J. P. Banerjee, “Quantum corrected drift-diffusion model for terahertz IMPATTs based on different semiconductors,” J. Comput. Electron., Vol. 14, pp. 309–20, 2015. doi: 10.1007/s10825-014-0658-9
  • A. Acharyya, J. Chakraborty, K. Das, S. Datta, P. De, S. Banerjee, and J. P. Banerjee, “Large-signal characterization of DDR silicon IMPATTs operating up to 0.5 THz,” Int. J. Microw. Wirel. Technol., Vol. 5, no. 5, pp. 567–78, 2013. doi: 10.1017/S1759078713000597
  • A. Acharyya, S. Chatterjee, J. Goswami, S. Banerjee, and J. P. Banerjee, “Quantum drift-diffusion model for IMPATT devices,” J. Comput. Electron., Vol. 13, pp. 739–52, 2014. doi: 10.1007/s10825-014-0595-7
  • F. Stern, “Iteration methods for calculating self-consistent fields in semiconductor inversion layers,” J. Comput. Phys, Vol. 6, no. 1, pp. 56–67, 1970. doi: 10.1016/0021-9991(70)90004-5
  • M. Ghosh, S. Ghosh, and A. Acharyya, “Self-Consistent quantum drift-diffusion model for Multiple quantum well IMPATT diodes,” J. Comput. Electron., Vol. 15, no. 4, pp. 1370–87, 2017. doi: 10.1007/s10825-016-0894-2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.