363
Views
8
CrossRef citations to date
0
Altmetric
Articles

Quadrotor UAV Position and Altitude Tracking Using an Optimized Fuzzy-Sliding Mode Control

, &

References

  • Y. Umetani, and K. Yoshida, “Resolved motion rate control of space manipulators with generalized Jacobian matrix,” IEEE Trans. Robot. Autom., Vol. 5, no. 3, pp. 303–14, 1989. doi: 10.1109/70.34766
  • S. A. A. Moosavian, R. Rastegari, and E. Papadopoulos, “Multiple impedance control for space free-flying robots,” J. Guid. Control. Dyn., Vol. 28, no. 5, pp. 939–47, 2005. doi: 10.2514/1.10252
  • S. A. A. Moosavian, and R. Rastegari, “Multiple-arm space free-flying robots for manipulating objects with force tracking restrictions,” Rob. Auton. Syst., Vol. 54, no. 10, pp. 779–88, 2006. doi: 10.1016/j.robot.2006.05.005
  • P. J. McKerrow, and D. Ratner, “The design of a tethered aerial robot,” in Proceedings 2007 IEEE International Conference on Robotics and Automation, 2007, pp. 355–360.
  • K. A. Alsaif, M. A. Foda, and A. Rosyid, “Dynamic simulation of an unmanned hybrid flying robot,” Int. J. Micro Air Vehicles, Vol. 7, no. 3, pp. 257–73, 2015. doi: 10.1260/1756-8293.7.3.257
  • P. Zarafshan, S. A. A. Moosavian, and M. Bahrami, “Adaptive control of an aerial robot using Lyapunov design,” in 2008 IEEE Conference on Robotics, Automation and Mechatronics, 2008, pp. 1–6.
  • P. Zarafshan, S. B. Moosavian, S. A. A. Moosavian, and M. Bahrami, “Optimal control of an aerial robot,” in 2008 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2008, pp. 1284–1289.
  • S. Kurnaz, O. Cetin, and O. Kaynak, “Adaptive neuro-Fuzzy inference system based autonomous flight control of unmanned air vehicles,” Expert. Syst. Appl., Vol. 37, no. 2, pp. 1229–34, 2010. doi: 10.1016/j.eswa.2009.06.009
  • J. C. Ervin, S. E. Alptekin, and D. J. DeTurris, “Optimization of the Fuzzy logic controller for an autonomous UAV,” in Proceedings of the Joint 4th European Society of Fuzzy Logic and Technology Conference (EUSFLAT) Conference, Barcelona, Spain, 2005.
  • L. Besnard, Y. B. Shtessel, and B. Landrum, “Quadrotor vehicle control via sliding mode controller driven by sliding mode disturbance observer,” J. Franklin Inst., Vol. 349, no. 2, pp. 658–84, 2012. doi: 10.1016/j.jfranklin.2011.06.031
  • H. Han, C.-Y. Su, and Y. Stepanenko, “Adaptive control of a class of nonlinear systems with nonlinearly parameterized Fuzzy approximators,” IEEE Trans. Fuzzy Syst., Vol. 9, no. 2, pp. 315–23, 2001. doi: 10.1109/91.919252
  • C.-M. Lin, and C.-F. Hsu, “Adaptive Fuzzy sliding-mode control for induction servomotor systems,” IEEE Trans. Energy Convers., Vol. 19, no. 2, pp. 362–8, 2004. doi: 10.1109/TEC.2003.821859
  • S. Peng, and W. Shi, “Adaptive Fuzzy integral terminal sliding mode control of a nonholonomic wheeled mobile robot,” Math. Probl. Eng, Vol. 2017, 2017.
  • J. Estevez, J. M. Lopez-Guede, and M. Graña, “Particle swarm optimization quadrotor control for cooperative aerial transportation of deformable linear objects,” Cybern. Syst., Vol. 47, no. 1–2, pp. 4–16, 2016. doi: 10.1080/01969722.2016.1128759
  • R. Babaie, and A. F. Ehyaie, “Robust optimal motion planning approach to cooperative grasping and transporting using multiple UAVs based on SDRE,” Trans. Inst. Meas. Control, Vol. 39, no. 9, pp. 1391–408, 2017. doi: 10.1177/0142331216640600
  • M. Abadpour, and H. Hamidi, “Stabilization of V94.2 gas Turbine using intelligent Fuzzy controller optimized by the genetic algorithm,” Int. J. Appl.Comput. Math., Vol. 3, no. 4, pp. 2929–42, 2017. doi: 10.1007/s40819-016-0276-2
  • F. Valdez, J. C. Vazquez, P. Melin, and O. Castillo, “Comparative study of the use of Fuzzy logic in improving particle swarm optimization variants for mathematical functions using co-evolution,” Appl. Soft. Comput., Vol. 52, pp. 1070–83, 2017. doi: 10.1016/j.asoc.2016.09.024
  • J.-J. Xiong, and E.-H. Zheng, “Position and attitude tracking control for a quadrotor UAV,” ISA Trans., Vol. 53, no. 3, pp. 725–31, 2014. doi: 10.1016/j.isatra.2014.01.004
  • D. Hidalgo, P. Melin, and O. Castillo, “An optimization method for designing type-2 Fuzzy inference systems based on the footprint of uncertainty using genetic algorithms,” Expert. Syst. Appl., Vol. 39, no. 4, pp. 4590–8, 2012. doi: 10.1016/j.eswa.2011.10.003
  • S. Aloui, O. Pagès, A. El Hajjaji, A. Chaari, and Y. Koubaa, “Improved Fuzzy sliding mode control for a class of MIMO nonlinear uncertain and perturbed systems,” Appl. Soft. Comput., Vol. 11, no. 1, pp. 820–6, 2011. doi: 10.1016/j.asoc.2010.01.001
  • W. Chi, Y. Ji, and Q. Gao, “Attitude tracking control for a quadrotor via backstepping and adaptive dynamic programming,” in 2019 Chinese Control and Decision Conference (CCDC), 2019, pp. 3108–13.
  • M. C. P. Santos, C. D. Rosales, J. A. Sarapura, M. Sarcinelli-Filho, and R. Carelli, “An adaptive dynamic controller for quadrotor to perform trajectory tracking tasks,” J. Intell. Robotic Syst., Vol. 93, no. 1–2, pp. 5–16, 2019. doi: 10.1007/s10846-018-0799-3
  • G. Yu, D. Cabecinhas, R. Cunha, and C. Silvestre, “Nonlinear backstepping control of a quadrotor-slung load system,” IEEE/ASME Trans. Mechatron., Vol. 24, no. 5, pp. 2304–15, 2019. doi: 10.1109/TMECH.2019.2930211
  • N. Miladi, H. Dimassi, S. Hadj Said, and F. M’Sahli, “Explicit nonlinear model predictive control tracking control based on a sliding mode observer for a quadrotor subject to disturbances,” Trans. Inst. Meas. Control, Vol. 42, no. 2, pp. 214–27. doi: 10.1177/0142331219865816
  • E. Kayacan, and R. Maslim, “Type-2 Fuzzy logic trajectory tracking control of quadrotor VTOL aircraft with elliptic membership functions,” IEEE/ASME Trans. Mechatron., Vol. 22, no. 1, pp. 339–48, 2017. doi: 10.1109/TMECH.2016.2614672
  • H. Razmi, and S. Afshinfar, “Neural network-based adaptive sliding mode control design for position and attitude control of a quadrotor UAV,” Aerosp. Sci. Technol., Vol. 91, pp. 12–27, 2019. doi: 10.1016/j.ast.2019.04.055

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.