240
Views
14
CrossRef citations to date
0
Altmetric
Articles

Glaucoma Detection Using Image Channels and Discrete Wavelet Transform

ORCID Icon, &

References

  • B. S. Kirar, and D. K. Agrawal, “Glaucoma diagnosis using discrete wavelet transform and histogram features from fundus image,” Int. J. Eng. Technol., Vol. 7, no. 4, pp. 2546–2551, 2018. doi: 10.14419/ijet.v7i4.14809
  • U. R. Acharya, S. Bhat, J. E. Koh, S. V. Bhandary, and H. Adeli, “A novel algorithm to detect glaucoma risk using texton and local confguration pattern features extracted from fundus images,” Comput. Biol. Med., Vol. 88, pp. 72–83, 2017. doi: 10.1016/j.compbiomed.2017.06.022
  • Y. C. Tham, X. Li, T. Y. Wong, H. A. Quigley, T. Aung, and C. Y. Cheng, “Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis,” Ophthalmology, Vol. 121, no. 11, pp. 2081–2090, 2014. doi: 10.1016/j.ophtha.2014.05.013
  • Y. Hagiwara, J. E. W. Koh, J. H. Tan, S. V. Bhandary, A. Laude, E. J. Ciaccio, L. Tong, and U. R. Acharya, “Computer-aided diagnosis of glaucoma using fundus images: A review,” Comput. Methods Programs Biomed., Vol. 16, pp. 1–12, 2018. doi: 10.1016/j.cmpb.2018.07.012
  • R. Kolar, and J. Jan, “Detection of glaucomatous eye via color fundus images using fractal dimensions,” Radio Eng., Vol. 17, no. 3, pp. 109–114, 2008.
  • L. G. Nyúl, “Retinal image analysis for automated glaucoma risk evaluation,” Proc. SPIE 7497, MIPPR 2009 Med. Imaging Parall. Process. Images Optimiz. Tech., Vol. 7497, pp. 74971C-1-9, Oct. 2009.
  • R. Bock, J. Meier, L. G. Nyul, J. Hornegger, and G. Michelson, “Glaucoma risk index: Automated glaucoma detection from color fundus images,” Med. Image Anal., Vol. 14, no. 3, pp. 471–481, 2010. doi: 10.1016/j.media.2009.12.006
  • C. Raja, and N. Gangatharan, “Glaucoma detection in fundal retinal images using trispectrum and complex wavelet based features,” Eur. J. Sci. Res., Vol. 97, no. 1, pp. 159–171, 2013.
  • C. Raja, and N. Gangatharan, “Appropriate sub-band selection in wavelet packet decomposition for automated glaucoma diagnoses,” Int. J. Autom. Comput., Vol. 12, no. 4, pp. 393–401, 2015. doi: 10.1007/s11633-014-0858-6
  • C. Raja, and N. Gangatharan, “Optimal hyper analytic wavelet transform for glaucoma detection in fundal retinal images,” J. Electr. Eng. Technol., Vol. 10, no. 4, pp. 1899–1909, 2015. doi: 10.5370/JEET.2015.10.4.1899
  • M. Kavyashree, and P. V. Rao, “A novel approach on automatic detection of optic disc and optic cup segmentation,” ITSI Trans. Electr. Electron. Eng., Vol. 4, no. 2, pp. 2320–8945, 2016.
  • S. Maheshwari, R. B. Pachori, and U. R. Acharya, “Automated diagnosis of glaucoma using empirical wavelet transform and correntropy features extracted from fundus images,” IEEE J. Biomed. Health Inf., Vol. 21, no. 3, pp. 903–813, May 2017.
  • S. Maheshwari, R. B. Pachori, V. Kanhangad, S. V. Bhandary, and U. R. Acharya, “Iterative variational mode decomposition based automated detection of glaucoma using fundus images,” Comput. Biol. Med., Vol. 88, pp. 142–149, 2017. doi: 10.1016/j.compbiomed.2017.06.017
  • B. S. Kirar, and D. K. Agrawal, “Computer aided diagnosis of glaucoma using discrete and empirical wavelet transform from fundus images,” IET Image Proc., Vol. 13, no. 1, pp. 73–82, 2019. doi: 10.1049/iet-ipr.2018.5297
  • RIM-One fundus image database medical image analysis group. Available: http://medimrg.webs.ull.es/, 2018.
  • K. Zuiderveld, “Contrast limited adaptive histograph equalization,” in Graphic gems IV, Andrew Glassner, Ed. San Diego: Academic Press Professional, 1994, pp. 474-485.
  • T. S. Huang, G. J. Yang, and G. Y. Tang, “A fast two-dimensional median filtering algorithm,” IEEE Trans. Acoust. Speech Signal Process., Vol. 27, no. 1, pp. 13–18, 1979. doi: 10.1109/TASSP.1979.1163188
  • R. C. Gonzalez, and R. E. Woods. Digital image processing. Noida: Pearson, 2014.
  • F. Saki, A. Tahmasbi, H. S. Zadeh, and S. B. Shokouhi, “Opposite weight learning rules with application in breast cancer diagnosis,” Comput. Biol. Med., Vol. 43, no. 1, pp. 32–41, 2013. doi: 10.1016/j.compbiomed.2012.10.006
  • M. K. Hu, “Visual pattern recognition by moment invariants,” IRE Trans. Inf. Theory, Vol. 8, no. 2, pp. 179–187, 1962. doi: 10.1109/TIT.1962.1057692
  • X. Wei. Chip histogram, Available: https://in.mathworks.com/matlabcentral/fileexchange/17537-histogram-features-of-a-gray-level-image?focused=5094859&tab=function, 2018.
  • Y. Zhang, and W. Lenan, “An MR brain images classifier via principal component analysis and kernel support vector machine,” Prog. Electromagn. Res, Vol. 130, pp. 369–388, 2012. doi: 10.2528/PIER12061410
  • R. M. Haralick, K. Shanmugam, and I. Dinstein, “Textural features for image classification,” IEEE Trans. Syst. Man Cybernet., Vol. SMC-3, pp. 610–621, 1973. doi: 10.1109/TSMC.1973.4309314
  • A. Uppuluri. GLCM_Features4, Available: https://in.mathworks.com/matlabcentral/fileexchange/22354-glcm-features4-m–vectorized-version-of-glcm-features1-m–with-code-changes, 2018.
  • W. O. Elferink. Gray level run length matrix (GLRLM), Available: https://in.mathworks.com/matlabcentral/fileexchange/52640-gray-level-run-length-image-statistics, 2018.
  • F. Yuan, J. Shi, X. Xia, Y. Yang, Y. Fang, and R. Wang, “Sub oriented histograms of local binary patterns for smoke detection and texture classification,” KSII Trans. Internet Inf. Syst., Vol. 10, no. 4, pp. 1807–1823, 2016.
  • I. Kononenko. Estimating attributes: analysis and extensions of RELIEF. Berlin: Springer, 1994.
  • G. W. Stewart, “On the early history of the singular value decomposition,” SIAM Rev., Vol. 35, no. 4, pp. 551–566, 1993. doi: 10.1137/1035134
  • J. A. K. Suykens, and J. Vandewalle, “Least squares support vector machine classifiers,” Neural Process. Lett., Vol. 9, no. 3, pp. 293–300, 1999. doi: 10.1023/A:1018628609742
  • N. N. Kulkarni, and V. K. Bairagi, “Extracting salient features for EEG based diagnosis of Alzheimer’s disease using support vector machine classifier,” IETE. J. Res., Vol. 63, no. 1, pp. 11–22, Jan. 2017. doi: 10.1080/03772063.2016.1241164
  • B. S. Kirar, and D. K. Agrawal, “Comparison between empirical and variational mode decomposition based on percentage variation in entropy feature from glaucoma image,” Indian J. Public Health Res. Develop., Vol. 9, no. 9, pp. 10–15, Sep. 2018. doi: 10.5958/0976-5506.2018.00960.9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.