296
Views
3
CrossRef citations to date
0
Altmetric
Articles

Optimized Analysis of Sensitivity and Non-Linearity for PDMS–Graphene MEMS Force Sensor

ORCID Icon, ORCID Icon & ORCID Icon

References

  • M. Gel, and I. Shimoyama, “Force sensing submicrometer thick cantilevers with ultra-thin piezoresistors by rapid thermal diffusion,” J. Micromech. Microeng., Vol. 14, no. 3, p. 423, Dec.2003. doi: 10.1088/0960-1317/14/3/016
  • T. C. Duc, J. F. Creemer, and P. M. Sarro, “Piezoresistive cantilever beam for force sensing in two dimensions,” IEEE Sensors J., Vol. 7, no. 1, pp. 96–104, Dec.2006. doi: 10.1109/JSEN.2006.886992
  • M. Lamba, H. Chaudhary, and K. Singh, “Analytical study of MEMS/NEMS force sensor for microbotics applications,” In IOP Conference Series: Materials Science and Engineering IOP Publishing, Vol. 594, no. 1, p. 012021, August 2019. doi: 10.1088/1757-899X/594/1/012021
  • M. Lamba, M. Nag, H. Chaudhary, and K. Singh, “Model prediction of microcantilever using DOE for stress and Eigen frequency analysis for force measurement,” In IOP Conference Series: Materials Science and Engineering IOP Publishing, Vol. 748, p. 012025, Feb. 2020. doi: 10.1088/1757-899X/748/1/012025
  • W. Chen, J. Jiang, J. Liu, and W. Chen. “A mems based sensor for large scale force measurement,” 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 1278–83, July 2013.
  • H. Tran Thi Thuy, T. D. Dinh, T. Vu Quoc, T. Pham Quoc, M. Aoyagi, M. Bui Ngoc, V. T. Dau, and T. T. Bui, “A robust two-axis tilt angle sensor based on air/liquid two-phase dielectric capacitive sensing structure,,” IETE. J. Res., Vol. 64, pp. 1–12, Sep 2018. doi: 10.1080/03772063.2018.1436733
  • S. Kouravand, “Design and modeling of some sensing and actuating mechanisms for MEMS applications,” Appl. Math. Model., Vol. 35, no. 10, pp. 5173–81, Oct.2011. doi: 10.1016/j.apm.2011.04.015
  • V. Rana, A. Singh, A. Ramesh, V. Dhyani, S. Das, and P. Singh, “Sidewall Transfer patterning-based nano-crystalline MoS 2 sensing element for stress and optical MEMS sensor,” in 2019 IEEE 32nd International Conference on micro electro mechanical systems (MEMS) IEEE, Jan 2019, pp. 636–639.
  • U. Krishnamoorthy, R. H. Olsson, G. R. Bogart, M. S. Baker, D. W. Carr, T. P. Swiler, and P. J. Clews, “In-plane MEMS-based nano-g accelerometer with sub-wavelength optical resonant sensor,” Sens. Actuators, A, Vol. 145–146, pp. 283–90, Jul 2008. doi: 10.1016/j.sna.2008.03.017
  • S. C. Karumuthil, K. Singh, U. Valiyaneerilakkal, J. Akhtar, and S. Varghese, “Fabrication of poly (vinylidene fluoride-trifluoroethylene)–zinc oxide based piezoelectric pressure sensor,” Sens. Actuators, A, Vol. 303, p. 111677, Mar. 2020. doi: 10.1016/j.sna.2019.111677
  • G.-H. Feng, and M.-Y. Tsai, “Acoustic emission sensor with structure-enhanced sensing mechanism based on micro-embossed piezoelectric polymer,” Sens. Actuators, A, Vol. 162, no. 1, pp. 100–6, Jul 2010. doi: 10.1016/j.sna.2010.06.019
  • M. Lamba, N. Mittal, K. Singh, and H. Chaudhary, “Design analysis of polysilicon piezoresistors PDMS (Polydimethylsiloxane) microcantilever based MEMS force sensor” International Journal of Modern physics B, Vol. 34, 09, p. 2050072, Apr. 2020. doi: 10.1142/S0217979220500721
  • P. Verma, D. Punetha, and S. K. Pandey, “Sensitivity optimization of MEMS based piezoresistive pressure sensor for Harsh environment,” Silicon, Vol. 2, pp. 1–9, Jan 2020.
  • A. R. Sankar, S. K. Lahiri, and S. Das, “Performance enhancement of a silicon MEMS piezoresistive single axis accelerometer with electroplated gold on a proof mass,” J. Micromech. Microeng., Vol. 19, no. 2, p. 025008, Jan 2009. doi: 10.1088/0960-1317/19/2/025008
  • Y. Kanda, and A. Yasukawa, “Optimum design considerations for silicon piezoresistive pressure sensors,” Sens. Actuators, A, Vol. 14, no. 1–3, pp. 539–42, July1997. doi: 10.1016/S0924-4247(97)01545-8
  • M. S. K. Mutyala, D. Bandhanadham, L. Pan, V. R. Pendyala, and H. F. Ji, “Mechanical and electronic approaches to improve the sensitivity of microcantilever sensors,” Acta Mech. Sin., Vol. 25, no. 1, pp. 1–12, Feb. 2009. doi: 10.1007/s10409-008-0222-6
  • J. Singh, M. M. Nayak, and K. Nagachenchaiah, “Linearity and sensitivity issues in piezoresistive pressure sensor,” In Proc. ICST, Vol. 2, pp. 404–9, 2007.
  • S. Bannikoppa, A. C. Katageri, K. B. Balavalad, and B. G. Sheeparamatti, “Design of piezoresistive pressure sensor for enhanced sensitivity,” in 2016 International Conference on Energy Efficient Technologies for Sustainability (ICEETS) IEEE, Nagercoil, Tamil Nadu, India, April 2016, pp. 706–10.
  • R. S. Jakati, K. B. Balavalad, and B. G. Sheeparamatti, “Sensitivity enhancement in piezoresistive micro-pressure sensor using perforated diaphragm,” in 2017 2nd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT) IEEE, Bangalore, Karnataka, India, May 2017, pp. 396–9.
  • J. A. Harley, and T. W. Kenny, “High-sensitivity piezoresistive cantilevers under 1000Å thick,” Appl. Phys. Lett., Vol. 75, no. 2, pp. 289–91, July1999. doi: 10.1063/1.124350
  • A. Loui, F. T. Goericke, T. V. Ratto, J. Lee, B. R. Hart, and W. P. King, “The effect of piezoresistive microcantilever geometry on cantilever sensitivity during surface stress chemical sensing,” Sens. Actuators, A, Vol. 147, no. 2, pp. 516–21, Oct.2008. doi: 10.1016/j.sna.2008.06.016
  • Y. C. Lim, A. Z. Kouzani, W. Duan, and A. Kaynak, “Effects of design parameters on sensitivity of microcantilever biosensors,” IEEE/ICME International Conference on Complex Medical Engineering, Gold Coast, QLD, 2010, pp. 177–181, doi:10.1109/ICCME.2010.5558847.
  • N. M. Nachippan, and V. Balaji, “Enhancement of deflection of microcantilever beam for improving the sensitivity of biosensor,” International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN, Vol. 8, no. 8, pp. 349–56, 2015.
  • K. Neethu, and K. J. Suja, “Sensitivity analysis of rectangular microcantilever structure with piezoresistive detection technique using Coventorware FEA,” Procedia. Comput. Sci., Vol. 93, pp. 146–52, Jan. 2016. doi: 10.1016/j.procs.2016.07.194
  • Y. H. Zhang, C. Yang, Z. H. Zhang, H. W. Lin, L. T. Liu, and T. L. Ren, “A novel pressure microsensor with 30-μm-thick diaphragm and meander-shaped piezoresistors partially distributed on high-stress bulk silicon region,” IEEE Sens. J., Vol. 7, no. 12, pp. 1742–8, 2007. doi: 10.1109/JSEN.2007.910298
  • S. S. Kumar, and B. D. Pant, “Design principles and considerations for the ‘ideal’ silicon piezoresistive pressure sensor: a focused review,” Microsyst. Technol., Vol. 20, no. 7, pp. 1213–47, 2014. doi: 10.1007/s00542-014-2215-7
  • J. Sosa, J. A. Montiel-Nelson, R. Pulido, and J. C. Garcia-Montesdeoca, “Design and optimization of a low power pressure sensor for wireless biomedical applications,” Journal of Sensors, Vol. 2015, p. 352036, 2015. doi: 10.1155/2015/352036
  • K. Madhavi, M. Krishna, and C. Murthy, “Effect of Diaphragm Geometry and piezoresistor dimensions on the sensitivity of a piezoresistive micropressure sensor using finite element analysis,” IJESE.Org, Vol. 1, no. 9, pp. 35–40, July 2013.
  • M. A. S. M. Haniff, H. W. Lee, S. S. Embong, and I. H. A. Azid, “Enhancing the performance of MEMS pressure sensors using ‘v’-shaped piezoresistor-sensing elements,” J. Sci. Ind. Res. (India), Vol. 73, no. 2, pp. 107–11, 2014.
  • K. J. Suja, G. S. Kumar, A. Nnth, and R. Komaragiri, “Dimension and doping concentration based noise and performance optimization of a piezoresistive MEMS pressure sensor,” Microsyst. Technol, Vol. 21, no. 4, pp. 831–9, Apr. 2015. doi: 10.1007/s00542-014-2118-7
  • J. A. Ghani, I. A. Choudhury, and H. H. Hassan, “Application of Taguchi method in the optimization of end milling parameters,” J. Mater. Process. Technol., Vol. 145, no. 1, pp. 84–92, Jan. 2004. doi: 10.1016/S0924-0136(03)00865-3
  • J. L. Rosa, A. Robin, M. B. Silva, C. A. Baldan, and M. P. Peres, “Electrodeposition of copper on titanium wires: Taguchi experimental design approach,” J. Mater. Process. Technol, Vol. 209, no. 3, pp. 1181–8, Feb. 2009. doi: 10.1016/j.jmatprotec.2008.03.021
  • A. A. Barlian, W. T. Park, J. R. Mallon, A. J. Rastegar, and B. L. Pruitt, “Review: semiconductor piezoresistance for microsystems,” Proc. of the IEEE, Vol. 97, no. 3, pp. 513–552, March 2009, doi:10.1109/JPROC.2009.2013612.
  • J. C. Doll, S. J. Park, and B. L. Pruitt, “Design optimization of piezoresistive cantilevers for force sensing in air and water,” J. Appl. Phys., Vol. 106, no. 6, p. 064310, 2009. doi: 10.1063/1.3224965
  • H. J. Pandya, H. T. Kim, R. Roy, and J. P. Desai, “MEMS based low cost piezoresistive microcantilever force sensor and sensor module,” Mater. Sci. Semicond. Process., Vol. 19, pp. 163–73, 2014. doi: 10.1016/j.mssp.2013.12.016
  • X. Ma, X. Tong, P. Guo, Y. Zhao, Q. Zhang, H. Li, and A. Wang, “MEMS piezo-resistive force sensor based on DC sputtering deposited amorphous carbon films,” Sens. Actuators A: Physical, vol. 303, p. 111700, Mar. 2020. doi: 10.1016/j.sna.2019.111700
  • M. Ahmed, M. M. Chitteboyina, D. P. Butler, and Z. Celik-Butler, “MEMS force sensor in a flexible substrate using nichrome piezoresistors,” IEEE Sensors J., Vol. 13, no. 10, pp. 4081–9, Jul.2013. doi: 10.1109/JSEN.2013.2272881
  • A. D. Singh, and R. M. Patrikar, “Design and fabrication of PDMS-based electrostatically actuated MEMS cantilever beam,” Micro Nano Lett., Vol. 15, no. 5, pp. 302–7, Apr 2020. doi: 10.1049/mnl.2019.0728
  • S. Pyo, J. I. Lee, M. O. Kim, H. K. Lee, and J. Kim, “Polymer-based flexible and multi-directional tactile sensor with multiple NiCr piezoresistors,” Micro and Nano Systems Letters, Vol. 7, no. 1, pp. 1–8, Dec.2019. doi: 10.1186/s40486-019-0085-6
  • A. Nag, S. Feng, S. C. Mukhopadhyay, J. Kosel, and D. Inglis, “3D printed mould-based graphite/PDMS sensor for low-force applications,” Sens. Actuators, A, Vol. 280, pp. 525–34, Sep 2018. doi: 10.1016/j.sna.2018.08.028
  • D. S. Kim, Y. J. Jeong, B. K. Lee, A. Shanmugasundaram, and D. W. Lee, “Piezoresistive sensor-integrated PDMS cantilever: A new class of device for measuring the drug-induced changes in the mechanical activity of cardiomyocytes,” Sens. Actuators, B, Vol. 1, no. 240, pp. 566–72, Mar 2017. doi: 10.1016/j.snb.2016.08.167
  • M. Nag, J. Singh, A. Kumar, P. A. Alvi, and K. Singh, “Sensitivity enhancement and temperature compatibility of graphene piezoresistive MEMS pressure sensor,” Microsyst. Technol, Vol. 25, no. 10, p. 3977–82, Oct. 2019. doi: 10.1007/s00542-019-04392-5
  • Y. Yin, Z. Cheng, L. Wang, K. Jin, and W. Wang, “Graphene, a material for high temperature devices – intrinsic carrier density, carrier drift velocity and lattice energy,” Sci. Rep., Vol. 4, no. 1, p. 5758, Jul 2014. doi: 10.1038/srep05758
  • M. Sang, J. Shin, K. Kim, and K. J. Yu, “Electronic and thermal properties of graphene and recent advances in graphene based electronics applications,” Nanomaterials, Vol. 9, no. 3, pp. 374, Mar. 2019. doi: 10.3390/nano9030374
  • Q. Zheng, J. H. Lee, X. Shen, X. Chen, and J. K. Kim, “Graphene-based wearable piezoresistive physical sensors,” Mater. Today, Vol. 36, pp. 158–179, Jan 2020. doi: 10.1016/j.mattod.2019.12.004
  • C. Lou, S. Wang, T. Liang, C. Pang, L. Huang, M. Run, and X. Liu, “A graphene-based flexible pressure sensor with applications to plantar pressure measurement and gait analysis,” Materials. (Basel), Vol. 10, no. 9, p. 1068, Sep 2017. doi: 10.3390/ma10091068
  • L. Q. Tao, K. N. Zhang, H. Tian, Y. Liu, D. Y. Wang, Y. Q. Chen, Y. Yang, and T. L. Ren, “Graphene-paper pressure sensor for detecting human motions,” ACS Nano, Vol. 11, no. 9, pp. 8790–5, Sep. 2017. doi: 10.1021/acsnano.7b02826
  • B. Komati, K. Rabenorosoa, C. Clévy, and P. Lutz, “Automated guiding task of a flexible micropart using a two-sensing-finger microgripper,” IEEE Trans. Autom. Sci. Eng., Vol. 10, no. 3, pp. 515–24, Feb. 2013. doi: 10.1109/TASE.2013.2241761
  • T. Kan, H. Takahashi, N. Binh-Khiem, Y. Aoyama, Y. Takei, K. Noda, and I. Shimoyama, “Design of a piezoresistive tri-axial force sensor probe using the sidewall doping method,” J. Micromech. Microeng., Vol. 23, no. 3, pp. 035027, Feb.2013. doi: 10.1088/0960-1317/23/3/035027
  • K. Singh, R. Joyce, S. Varghese, and J. Akhtar, “Fabrication of electron beam physical vapor deposited polysilicon piezoresistive MEMS pressure sensor,” Sensors Actuators A. Phys, Vol. 223, pp. 151–8, March 2015. doi: 10.1016/j.sna.2014.12.033
  • J. Akhtar, B. B. Dixit, B. D. Pant, and V. P. Deshwal, “Polysilicon piezoresistive pressure sensors based on MEMS technology,” IETE. J. Res., Vol. 49, no. 6, pp. 365–77, Nov. 2003. doi: 10.1080/03772063.2003.11416360
  • B. Guo, L. Fang, B. Zhang, and J. R. Gong, “Graphene doping: a review,” Insciences J., Vol. 1, no. 2, pp. 80–9, Apr.2011. doi: 10.5640/insc.010280
  • H. Lee, K. Paeng, and I. S. Kim, “A review of doping modulation in graphene,” Synth. Met., Vol. 244, pp. 36–47, Oct.2018. doi: 10.1016/j.synthmet.2018.07.001
  • S. M. Yang, T. I. Yin, and C. Chang, “Development of a double-microcantilever for surface stress measurement in microsensors,” Sens. Actuators, B, Vol. 121, no. 2, pp. 545–55, Feb. 2007. doi: 10.1016/j.snb.2006.04.108
  • T. I. Yin, and S. M. Yang, “Double-microcantilever design for surface stress measurement in biosensors,” Proceedings of SPIE, Vol. 5763, pp. 333–44, May 2005. doi: 10.1117/12.598651
  • S. Zhang, T. Wang, L. Lou, W. M. Tsang, R. Sawada, D. L. K. wong, and C. Lee, “Annularly grooved diaphragm pressure sensor with embedded silicon nanowires for low pressure application,” J. Microelectromech. Syst., Vol. 23, no. 6, pp. 1396–1407, Apr. 2014. doi: 10.1109/JMEMS.2014.2313635
  • T. Akter, J. Joseph, and W. S. Kim, “Fabrication of sensitivity tunable flexible force sensor via spray coating of graphite ink,” IEEE Electron Device Lett., Vol. 33, no. 6, pp. 902–4, Apr. 2012. doi: 10.1109/LED.2012.2189932
  • T. L. Ren, H. Tian, D. Xie, and Y. Yang, “Flexible graphite-on-paper piezoresistive sensors,” Sensors, Vol. 12, no. 5, pp. 6685–94, May 2012. doi: 10.3390/s120506685

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.