132
Views
2
CrossRef citations to date
0
Altmetric
Articles

A Multiple-node Hormone Regulation of Neuroendocrine-PID (MnHR-NEPID) Control for Nonlinear MIMO Systems

ORCID Icon, ORCID Icon & ORCID Icon

References

  • M. S. Park, D. Chwa, and M. Eom, “Adaptive sliding-mode antisway control of uncertain overhead cranes with high-speed hoisting motion,” IEEE. Trans. Fuzzy. Syst., Vol. 22, no. 5, pp. 1262–71, Oct. 2014. doi: 10.1109/TFUZZ.2013.2290139
  • X. Yang, J. Cui, D. Lao, D. Li, and J. Chen, “Input shaping enhanced active disturbance rejection control for a twin rotor multi-input multi-output system (trms),” ISA. Trans., Vol. 62, pp. 287–98, May 2016. doi: 10.1016/j.isatra.2016.02.001
  • M. A. Mohd Basri, A. R. Husain, and K. A. Danapalasingam, “Intelligent adaptive backstepping control for mimo uncertain non-linear quadrotor helicopter systems,” Trans. Inst. Meas. Control, Vol. 37, no. 3, pp. 345–61, Jun. 2014. doi: 10.1177/0142331214538900
  • X. Fang, A. Wu, Y. Shang, and N. Dong, “A novel sliding mode controller for small-scale unmanned helicopters with mismatched disturbance,” Nonlinear Dyn., Vol. 83, no. 2, pp. 1053–68, Sep. 2015.
  • X. Lin, J. Nie, Y. Jiao, K. Liang, and H. Li, “Adaptive fuzzy output feedback stabilization control for the underactuated surface vessel,” Appl. Ocean Res., Vol. 74, pp. 40–8, May 2018. doi: 10.1016/j.apor.2018.01.015
  • E. Hernandez-Marquez, R. Silva-Ortigoza, J. R. Garcia-Sanchez, M. Marcelino-Aranda, and G. Saldana-Gonzalez, “A dc/dc buck-boost converter-inverter-dc motor system: Sensorless passivity-based control,” IEEE. Access, Vol. 6, pp. 31486–92, Jun. 2018. doi: 10.1109/ACCESS.2018.2846614
  • Z.-S. Hou and Z. Wang, “From model-based control to data-driven control: Survey, classification and perspective,” Inf. Sci. (Ny), Vol. 235, pp. 3–35, Jun. 2013. doi: 10.1016/j.ins.2012.07.014
  • P. Goodall, R. Sharpe, and A. West, “A data-driven simulation to support remanufacturing operations,” Comput. Industry, Vol. 105, pp. 48–60, Feb. 2019. doi: 10.1016/j.compind.2018.11.001
  • S. Preitl, R.-E. Precup, Z. Preitl, S. Vaivoda, S. Kilyeni, and J. K. Tar, “Iterative feedback and learning control. Servo systems applications,” IFAC Proc. Volumes, Vol. 40, no. 8, pp. 16–27, Jan. 2007. doi: 10.3182/20070709-3-RO-4910.00004
  • J. R. Salvador, D. R. Ramirez, T. Alamo, and D. Muñoz de la Pena, “Offset free data driven control: application to a process control trainer,” IET Control Theory Appl., Vol. 13, no. 18, pp. 3096–106, Sep. 2019. doi: 10.1049/iet-cta.2019.0376
  • M.-B. Radac and R.-E. Precup, “Data-driven model-free tracking reinforcement learning control with VRFT-based adaptive actor-critic,” Appl. Sci., Vol. 9, no. 9, p. 1807, Jan. 2019. doi: 10.3390/app9091807
  • R. C. Roman, R. E. Precup, E. M. Petriu, and F. Dragan, “Combination of data-driven active disturbance rejection and Takagi-Sugeno fuzzy control with experimental validation on tower crane systems,” Energies, Vol. 12, no. 8, pp. 1–19, Apr. 2019. doi: 10.3390/en12081548
  • Z. Hou and S. Xiong, “On model-free adaptive control and its stability analysis,” IEEE. Trans. Automat. Contr, Vol. 64, no. 11, pp. 4555–69, Jan. 2019. doi: 10.1109/TAC.2019.2894586
  • Y. Zhu, Y. Jiang, K. Yang, C. Hu, and H. Mu, “Convergence performance oriented data-driven tuning method for parameterised controller design with cases investigation,” IET Control Theory Appl., Vol. 10, no. 12, pp. 1322–30, Aug. 2016. doi: 10.1049/iet-cta.2015.0661
  • R. C. Roman, R. E. Precup, C. A. Bojan-Dragos, and A. I. Szedlak-Stinean, “Combined model-free adaptive control with fuzzy component by virtual reference feedback tuning for tower crane systems,” Procedia. Comput. Sci., Vol. 162, pp. 267–74, Jan. 2019. doi: 10.1016/j.procs.2019.11.284
  • T. Yamamoto, K. Takao, and T. Yamada, “Design of a data-driven pid controller,” IEEE. Trans. Control. Syst. Technol., Vol. 17, no. 1, pp. 29–39, Jan. 2009. doi: 10.1109/TCST.2008.921808
  • M. A. Ahmad, S. I. Azuma, and T. Sugie, “Performance analysis of model-free pid tuning of mimo systems based on simultaneous perturbation stochastic approximation,” Expert. Syst. Appl., Vol. 41, no. 14, pp. 6361–70, Oct. 2014. doi: 10.1016/j.eswa.2014.03.055
  • Y. Li, X. Wang, R. Huang, and Z. Qiu, “Active vibration and noise control of vibro-acoustic system by using pid controller,” J. Sound Vib., Vol. 348, pp. 57–70, Jul. 2015. doi: 10.1016/j.jsv.2015.03.017
  • K. Astrom and T. Hagglund, “The future of pid control,” Control. Eng. Pract., Vol. 9, no. 11, pp. 1163–75, Nov. 2001. doi: 10.1016/S0967-0661(01)00062-4
  • P. Shah and S. Agashe, “Review of fractional pid controller,” Mechatronics, Vol. 38, pp. 29–41, Sep. 2016. doi: 10.1016/j.mechatronics.2016.06.005
  • T. Varshney, R. Varshney, and N. Singh, “A dpso-based nn-pid controller for mimo systems,” in Ambient Communications and Computer Systems. Singapore: Springer, 2018, pp. 535–551.
  • A. A. El-Samahy and M. A. Shamseldin, “Brushless dc motor tracking control using self-tuning fuzzy pid control and model reference adaptive control,” Ain Shams Eng. J., Vol. 9, no. 3, pp. 341–52, Sep. 2018. doi: 10.1016/j.asej.2016.02.004
  • A. Ates, B. B. Alagoz, C. Yeroglu, and H. Alisoy, “Sigmoid based pid controller implementation for rotor control,” in Proceedings of the 2015 IEEE European Control Conference (ECC), Linz, Austria, IEEE, 2015, pp. 458–63.
  • A. T. Azar and F. E. Serrano, “Fractional order sliding mode pid controller/observer for continuous nonlinear switched systems with pso parameter tuning,” in Proceedings of the International Conference on Advanced Machine Learning Technologies and Applications, Egypt, Springer, 2018, pp. 13–22.
  • A. Chakrabarti, P. K. Sadhu, A. Chakraborty, and P. PAL, “Brain emotional learning based intelligent controller for induction heating systems,” Rev. Roum. Sci. Tech. Ser. Electrotech. Energ., Vol. 63, no. 1, pp. 58–64, Jan. 2018.
  • D. Zhu, Y. Zhao, and M. Yan, “A bio-inspired neurodynamics-based backstepping path-following control of an AUV with ocean current,” Int. J. Robot. Autom., Vol. 27, no. 3, pp. 298–307, Jan. 2012.
  • Y. Ding, T. Zhang, L. Ren, Y. Jin, K. Hao, and L. Chen, “Immune-inspired self-adaptive collaborative control allocation for multi-level stretching processes,” Inform. Sci., Vol. 342, pp. 81–95, May 2016. doi: 10.1016/j.ins.2015.12.029
  • B. Liu, L. Ren, and Y. Ding, “A novel intelligent controller based on modulation of neuroendocrine system,” In International Symposium on Neural Networks. Berlin: Heidelberg, 2005, pp. 119–24.
  • Y. Ding, N. Xu, L. Ren, and K. Hao, “Data-driven neuroendocrine ultra- short feedback-based cooperative control system,” IEEE Trans. Control Syst. Technol., Vol. 23, no. 3, pp. 1205–12, May 2015. doi: 10.1109/TCST.2014.2359386
  • Y. Ding, L. Chen, and K. Hao, “Human body based intelligent cooperative decoupling controllers,” in Bio-Inspired Collaborative Intelligent Control and Optimization. Singapore: Springer, Nov. 2017, pp. 25–80.
  • M. R. Ghazali, M. A. Ahmad, M. F. M. Jusof, and R. M. T. R. Ismail, “A data-driven neuroendocrine-pid controller for underactuated systems based on safe experimentation dynamics,” in Proceedings of the IEEE 14th International Colloquium on Signal Processing and Its Applications (CSPA), Penang Malaysia, IEEE, 2018, pp. 61–6.
  • J. R. Marden, H. P. Young, G. Arslan, and J. S. Shamma, “Payoff-based dynamics for multiplayer weakly acyclic games,” SIAM J. Control Optim., Vol. 48, no. 1, pp. 373–96, Feb. 2009. doi: 10.1137/070680199
  • X. Liang, Y. Ding, L. Ren, K. Hao, and Y. Jin, “Data-driven cooperative intelligent controller based on the endocrine regulation mechanism,” IEEE. Trans. Control. Syst. Technol., Vol. 22, no. 1, pp. 94–101, Jan. 2014. doi: 10.1109/TCST.2013.2245417
  • M. R. Ghazali, M. A. Ahmad, R. M. T. Raja Ismail, and M. O. Tokhi, “An improved neuroendocrine–proportional–integral–derivative controller with sigmoid-based secretion rate for nonlinear multi-input–multi-output crane systems,” J. Low Frequency Noise Vibration Active Control, pp. 1–15, 2019. doi:10.1177/1461348419867524.
  • M. R. Ghazali, M. A. Ahmad, and R. M. T. Raja Ismail, “Adaptive safe experimentation dynamics for data-driven neuroendocrine-PID control of MIMO systems,” IETE J. Res., pp. 1–14, Sept. 2019. doi:10.1080/03772063.2019.1656556
  • M. I. M. O. Twin Rotor, System Advanced Teaching Manual 1 (33-007-4M5). Crowborough: Feedback Instruments Ltd, 1998.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.