124
Views
1
CrossRef citations to date
0
Altmetric
Articles

Design of Fast Variable Structure Adaptive Fuzzy Control for Nonlinear State-Delay Systems with Uncertainty

, ORCID Icon, ORCID Icon & ORCID Icon

References

  • X. G. Yan, S. K. Spurgeon, and C. Edwards, “Memoryless static output feedback sliding mode control for nonlinear systems with delayed disturbances,” IEEE Trans. Autom. Control, Vol. 59, no. 7, pp. 1906–12, 2014. doi: 10.1109/TAC.2013.2295662
  • Q. Gao, G. Feng, Z. Xi, Y. Wang, and J. Qiu, “A new design of robust H∞ sliding mode control for uncertain stochastic T–S fuzzy time-delay systems,” IEEE Trans. Cybern., Vol. 44, no. 9, pp. 1556–66, 2014. doi: 10.1109/TCYB.2013.2289923
  • Y. Han, Y. Kao, and C. Gao, “Robust sliding mode control for uncertain discrete singular systems with time-varying delays and external disturbances,” Automatica, Vol. 75, pp. 210–16, 2017. doi: 10.1016/j.automatica.2016.10.001
  • H. Cherni, I. Boulaabi, A. Sellami, and F. Ben Hmida, “Robust actuator and sensor faults reconstruction based on new sliding mode observer for a class of output time-delay systems,” IETE J. Res., Vol. 62, no. 6, pp. 812–21, 2016. doi: 10.1080/03772063.2016.1196123
  • Y. Chen, S. Fei, and Y. Li, “Robust stabilization for uncertain saturated time-delay systems: A distributed-delay-dependent polytopic approach,” IEEE Trans. Automat. Contr., Vol. 62, no. 7, pp. 3455–60, 2017. doi: 10.1109/TAC.2016.2611559
  • J. Zhang, M. Lyu, T. Shen, L. Liu, and Y. Bo, “Sliding mode control for a class of nonlinear multi-agent system with time-delay and uncertainties,” IEEE Trans. Ind. Electron., Vol. 65, no. 1, pp. 865–75, 2018. doi: 10.1109/TIE.2017.2701777
  • H. A. Yousef, M. Hamdy, and K. Nashed, “L1 adaptive fuzzy controller for a class of nonlinear systems with unknown backlash-like hysteresis,” Int. J. Syst. Sci., Vol. 48, no. 12, pp. 2522–33, 2017. doi: 10.1080/00207721.2017.1324065
  • M. Hamdy, A. Ramadan, and B. Abozalam, “A novel inverted fuzzy decoupling scheme for MIMO systems with disturbance: a case study of binary distillation column,” J. Intell. Manuf., Vol. 29, no. 8, pp. 1859–71, 2018. doi: 10.1007/s10845-016-1218-x
  • X. J. Li, and G. H. Yang, “FLS-based adaptive synchronization control of complex dynamical networks with nonlinear couplings and state-dependent uncertainties,” IEEE Trans. Cybern., Vol. 46, no. 1, pp. 171–80, 2016. doi: 10.1109/TCYB.2015.2399334
  • X. J. Li, and G. H. Yang, “Neural-network-based adaptive decentralized fault-tolerant control for a class of interconnected nonlinear systems,” IEEE Trans. Neural Networks Learn. Syst., Vol. 29, no. 1, pp. 144–55, 2018. doi: 10.1109/TNNLS.2016.2616906
  • T. S. Wu, M. Karkoub, C. T. Chen, W. S. Yu, M. G. Her, and J. Y. Su, “Robust tracking design based on adaptive fuzzy control of uncertain nonlinear MIMO systems with time delayed states,” Int. J. Control. Autom. Syst., Vol. 11, no. 6, pp. 1300–13, 2013. doi: 10.1007/s12555-012-0543-x
  • Z. Liu, G. Lai, Y. Zhang, and C. L. P. Chen, “Adaptive fuzzy tracking control of nonlinear time-delay systems with dead-zone output mechanism based on a novel smooth model,” IEEE Trans. Fuzzy Syst., Vol. 23, no. 6, pp. 1998–2011, 2015. doi: 10.1109/TFUZZ.2015.2396075
  • H. Wang, X. Liu, K. Liu, and H. R. Karimi, “Approximation-based adaptive fuzzy tracking control for a class of nonstrict-feedback stochastic nonlinear time-delay systems,” IEEE Trans. Fuzzy Syst., Vol. 23, no. 5, pp. 1746–60, 2015. doi: 10.1109/TFUZZ.2014.2375917
  • B. Chen, C. Lin, X. Liu, and K. Liu, “Observer-based adaptive fuzzy control for a class of nonlinear delayed systems,” IEEE Trans. Syst. MAN, Cybern. Syst., Vol. 46, no. 1, pp. 27–36, 2016. doi: 10.1109/TSMC.2015.2420543
  • T.-S. Wu, M. Karkoub, H. Wang, H.-S. Chen, and T.-H. Chen, “Robust tracking control of MIMO underactuated nonlinear systems with dead-zone band and delayed uncertainty using an adaptive fuzzy control,” IEEE Trans. Fuzzy Syst., Vol. 25, no. 4, pp. 905–18, 2017. doi: 10.1109/TFUZZ.2016.2586970
  • D. Zhai, C. Xi, J. Dong, and Q. Zhang, “Delay-estimation-based adaptive fuzzy memory control for a class of uncertain nonlinear time-delay systems,” Fuzzy Sets Syst., Vol. 316, pp. 1–19, 2017. doi: 10.1016/j.fss.2016.10.005
  • M. Hamdy, S. Abd-Elhaleem, and M. A. Fkirin, “Time-varying delay compensation for a class of nonlinear control systems over network via H∞ adaptive fuzzy controller,” IEEE Trans. Syst. Man, Cybern. Syst., Vol. 47, no. 8, pp. 2114–24, 2017. doi: 10.1109/TSMC.2016.2614779
  • M. Hamdy, S. Abd-Elhaleem, and M. A. Fkirin, “Adaptive fuzzy predictive controller for a class of networked nonlinear systems with time-varying delay,” IEEE Trans. Fuzzy Syst., Vol. 26, no. 4, pp. 2135–44, 2018. doi: 10.1109/TFUZZ.2017.2764851
  • T. S. Wu, M. Karkoub, H. S. Chen, W. S. Yu, and M. G. Her, “Robust tracking observer-based adaptive fuzzy control design for uncertain nonlinear MIMO systems with time delayed states,” Inf. Sci., Vol. 290, no. C, pp. 86–105, 2015. doi: 10.1016/j.ins.2014.08.001
  • M. Wang, X. Liu, and P. Shi, “Adaptive neural control of pure-feedback nonlinear time-delay systems via dynamic surface technique,” IEEE Trans. Syst. Man, Cybern. Part B, Vol. 41, no. 6, pp. 1681–92, 2011. doi: 10.1109/TSMCB.2011.2159111
  • X. Zhang, C. Y. Su, Y. Lin, L. Ma, and J. Wang, “Adaptive neural network dynamic surface control for a class of time-delay nonlinear systems with hysteresis inputs and dynamic uncertainties,” IEEE Trans. Neural Networks Learn. Syst., Vol. 26, no. 11, pp. 2844–60, 2015. doi: 10.1109/TNNLS.2015.2397935
  • S. C. Tong, Y. M. Li, and H.-G. Zhang, “Adaptive neural network decentralized backstepping output-feedback control for nonlinear large-scale systems with time delays,” IEEE Trans. Neural Networks, Vol. 22, no. 7, pp. 1073–86, 2011. doi: 10.1109/TNN.2011.2146274
  • D. P. Li, and D. J. Li, “Adaptive neural tracking control for nonlinear time-delay systems with full state constraints,” IEEE Trans. Syst. Man, Cybern. Syst., Vol. 47, no. 7, pp. 1590–601, 2017. doi: 10.1109/TSMC.2016.2637063
  • G. Wen, C. L. P. Chen, Y. J. Liu, and Z. Liu, “Neural network-based adaptive leader-following consensus control for a class of nonlinear multiagent state-delay systems,” IEEE Trans. Cybern., Vol. 47, no. 8, pp. 2151–60, 2017. doi: 10.1109/TCYB.2016.2608499
  • S. S. Ge, F. Hong, and T. H. Lee, “Robust adaptive control of nonlinear systems with unknown time delays,” Automatica, Vol. 41, no. 7, pp. 1181–90, 2005. doi: 10.1016/j.automatica.2005.01.011
  • N. Sharma, S. Bhasin, Q. Wang, and W. E. Dixon, “RISE-based adaptive control of a control affine uncertain nonlinear system with unknown state delays,” IEEE Trans. Automat. Contr., Vol. 57, no. 1, pp. 255–9, 2012. doi: 10.1109/TAC.2011.2166314
  • S. Han, H. Wang, and Y. Tian, “Model-free based adaptive nonsingular fast terminal sliding mode control with time-delay estimation for a 12 DOF multi-functional lower limb exoskeleton,” Adv. Eng. Softw., Vol. 119, pp. 38–47, 2018. doi: 10.1016/j.advengsoft.2018.01.004
  • A. Riani, T. Madani, A. Benallegue, and K. Djouani, “Adaptive integral terminal sliding mode control for upper-limb rehabilitation exoskeleton,” Control Eng. Pract., Vol. 75, pp. 108–17, 2018. doi: 10.1016/j.conengprac.2018.02.013
  • M. Boukattaya, N. Mezghani, and T. Damak, “Adaptive nonsingular fast terminal sliding-mode control for the tracking problem of uncertain dynamical systems,” ISA Trans., Vol. 77, pp. 1–19, 2018. doi: 10.1016/j.isatra.2018.04.007
  • Y. Zafari, A. H. Mazinan, and S. Shoja-Majidabad, “Demagnetization fault detection for five-phase IPMSM through integral terminal sliding mode flux-linkage observer,” IETE J. Res., Vol. 64, no. 4, pp. 473–86, 2019. doi: 10.1080/03772063.2018.1436474
  • Y. Feng, X. Yu, and F. Han, “On nonsingular terminal sliding-mode control of nonlinear systems,” Automatica, Vol. 49, no. 6, pp. 1715–22, 2013. doi: 10.1016/j.automatica.2013.01.051
  • J. Yang, S. Li, J. Su, and X. Yu, “Continuous nonsingular terminal sliding mode control for systems with mismatched disturbances,” Automatica, Vol. 49, no. 7, pp. 2287–91, 2013. doi: 10.1016/j.automatica.2013.03.026
  • J. Liu, and X. Wang. Advanced Sliding Mode Control for Mechanical Systems: Design, Analysis and MATLAB Simulation. Beijing: Springer, Tsinghua University Press, 2011.
  • V. Nekoukar, and A. Erfanian, “Adaptive fuzzy terminal sliding mode control for a class of MIMO uncertain nonlinear systems,” Fuzzy Sets Syst., Vol. 179, no. 1, pp. 34–49, 2011. doi: 10.1016/j.fss.2011.05.009
  • S. Yu, X. Yu, B. Shirinzadeh, and Z. Man, “Continuous finite-time control for robotic manipulators with terminal sliding mode,” Automatica, Vol. 41, no. 11, pp. 1957–64, 2005. doi: 10.1016/j.automatica.2005.07.001
  • L. Yang, and J. Yang, “Nonsingular fast terminal sliding-mode control for nonlinear dynamical systems,” Int. J. Robust Nonlinear Control, Vol. 21, no. 16, pp. 1865–79, 2011. doi: 10.1002/rnc.1666
  • E. Rouhani, and A. Erfanian, “A finite-time adaptive fuzzy terminal sliding mode control for uncertain nonlinear systems,” Int. J. Control. Autom. Syst., Vol. 16, no. 4, pp. 1938–50, 2018. doi: 10.1007/s12555-017-0552-x
  • M. Abramowitz, and I. A. Stegun. Handbook of Mathematical Functions: With Formulas, Graphs and Mathematical Tables. New York, USA: Dover, 1983.
  • M. Zak, J. P. Zbilut, and R. E. Meyers. From Instability to Intelligence: Complexity and Predictability in Nonlinear Dynamics. Berlin: Springer, 1997.
  • V. Nekoukar, and A. Erfanian, “An adaptive fuzzy sliding-mode controller design for walking control with functional electrical stimulation: A computer simulation study,” Int. J. Control. Autom. Syst., Vol. 9, no. 6, pp. 1124–35, 2011. doi: 10.1007/s12555-011-0614-4
  • X.-G. Yan, S. K. Spurgeon, and C. Edwards, “Sliding mode control for time-varying delayed systems based on a reduced-order observer,” Automatica, Vol. 46, no. 8, pp. 1354–62, 2010. doi: 10.1016/j.automatica.2010.05.017

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.