178
Views
6
CrossRef citations to date
0
Altmetric
Articles

Minimal Realization of Fractional-Order Inverse Filters

ORCID Icon, &

References

  • K. Steiglitz, “An RC impedance approximation to s (−1/2),” IEEE Trans. Circuits Syst, Vol. CT-11, pp. 160–161, Apr. 1964.
  • C. A. Halijak, “An RC impedance approximation to (1/s)1/2,” IEEE Trans. Circuit Theory, Vol. 11, no. 4, pp. 494–495, Dec. 1964.
  • G. E. Carlson, and C. A. Halijak, “Approximation of fractional capacitors (1/s)(1/n) by a regular Newton process,” IEEE Trans. Circuit Theory, Vol. 11, no. 2, pp. 210–213, Jun. 1964.
  • S. C. Dutta Roy, “On the realization of a constant-argument immittance or fractional operator,” IEEE Trans. Circuits Systems, Vol. CAS-14, no. 3, pp. 264–274, Sep. 1967.
  • K. Biswas, S. Sen, and P. K. Dutta, “Realization of a constant phase element and its performance study in a differentiator circuits,” IEEE Trans. Circuits Syst. II, Exp. Briefs, Vol. 53, no. 9, pp. 802–806, Sep. 2006.
  • T. Haba, G. Ablart, T. Camps, and F. Olivie, “Influence of electrical parameters on the input impedance of a fractance structure realized on siliocon,” Chaos, Solutions Fractals, Vol. 24, no. 2, pp. 479–490, Apr. 2005.
  • M. Nakagawa, and K. Sorimachi, “Basic characteristic of fractance devices,” IEICE Trans. Fund, Vol. E75-A, no. 12, pp. 1814–1819, Dec. 1992.
  • M. Sugi, Y. Hirano, Y. F. Miura, and K. Saito, “Simulation of fractal immittance by analog circuits: an approach to the optimized circuits,” IEICE Trans. Fundamen Electron Commun Comp Sci, Vol. E82, no. 8, pp. 1627–1634, Aug. 1999.
  • J. Valsa, P. Dvorak, and M. Friedl, “Network Model of the CPE,” Radioengineering, Vol. 20, pp. 619–626, Sep. 2011.
  • G. Tsirimokou, “A systematic procedure for deriving RC networks of fractional-order elements emulators using MATLAB,” Int. J. Electron. Commun. (AEU), Vol. 78, pp. 7–14, Aug. 2017.
  • A. G. Radwan, A. M. Soliman, and A. S. Elwakil, “First-order filters generalized to the fractional domain,” J. Circuits Syst. Comput, Vol. 17, no. 1, pp. 55–66, July 2008.
  • A. G. Radwan, A. M. Soliman, and A. S. Elwakil, “On the generalization of second-order filters to the fractional-order domain,” J. Circuits Syst. Comput, Vol. 18, no. 2, pp. 361–386, Mar. 2009.
  • T. J. Freeborn, B. Maundy, and A. S. Elwakil. “Towards the realization of fractional step filters,” In Pro IEEE Int. Symp. Circuits Syst. (ISCAS), pp. 1037–1040, May.-Jun. 2010.
  • T. J. Freeborn, B. Maundy, and A. S. Elwakil, “Field programmable analogue array implementation of fractional step filters,” IET Circuits Devices Syst., Vol. 4, no. 6, pp. 514–524, Nov. 2010.
  • B. Maundy, A. S. Elwakil, and T. J. Freeborn, “On the practical realization of higher-order filters with fractional stepping,” Signal Process., Vol. 91, no. 3, pp. 484–491, Mar. 2011.
  • A. Soltan, A. G. Radwan, and A. M. Soliman, “Fractional order filters with two fractional elements of dependent orders,” Microelectronics. J., Vol. 43, no. 11, pp. 818–827, Nov. 2012.
  • P. Ahmadi, B. Maundy, A. S. Elwakil, and L. Belostotski, “High-quality factor asymmetric-slope band-pass filters: a fractional-order capacitor approach,” IET Circuits Devices Syst., Vol. 6, no. 3, pp. 187–197, May. 2012.
  • T. J. Freeborn, B. Maundy, and A. S. Elwakil, “Fractional-step Tow-Thomas biquad filters,” Nonlinear Theory and Its Applications, IEICE, Vol. 3, no. 3, pp. 357–374, Jul. 2012.
  • T. Suksang, V. Pirajnanchai, and W. Loedhammacakra, “Tunable OTA Low pass filter with the fractional-order step technique,” In Proc. Int. Conf. Advances in Electron Electr. Engg. (AEEE), 29–32, 2012.
  • M. C. Tripathy, K. Biswas, and S. Sen, “A design example of a fractional-order Kerwin-Huelsman-Newcomb biquad filter with two fractional capacitors of different order,” Circuits Syst. Signal Process, Vol. 32, no. 4, pp. 1523–1536, Aug. 2013.
  • A. S. Ali, A. G. Radwan, and A. M. Soliman, “Fractional order Butterworth filter: active and passive realizations,” IEEE J. Emerging Selected Topics Circuits Syst, Vol. 3, no. 3, pp. 346–354, Jun. 2013.
  • A. Soltan, A. G. Radwan, and A. M. Soliman, “CCII based KHN fractional order filter,” In Circuits and Systems (MWSCAS), Vol. 56, 197–200, 2013.
  • A. Soltan, A. G. Radwan, and A. M. Soliman, “Fractional order Sallen-Key and KHN filters stability and Poles allocation,” Circuits Syst. Signal Process., Vol. 34, no. 5, pp. 1461–1480, Aug. 2014.
  • A. Soltan, A. G. Radwan, and A. M. Soliman, “CCII based fractional filters of different orders,” J. Advanced Research, Vol. 5, no. 2, pp. 157–164, Mar. 2014.
  • M. C. Tripathy, “Experimental realization of fractional order filter using PMMA coated constant phase elements,” International J Engineering and Advanced Research Technology (IJEART) ISSN: 2454-9290, Vol. l, no. 5, pp. 14–17, Nov. 2015.
  • D. Kubanek, J. Koton, J. Jerabek, P. Ushakov, and A. Shadrin. “Design and properties of fractional order multifunction filter with DVCCs,” 39th international conference on Telecommunications and Signal Processing (TSP), 620-624, Jun. 2016.
  • F. Khateb, D. Kubanek, G. Tsirimokou, and C. Psychalinos, “Fractional order filters based on low-voltage DDCCs,” Microelectron. J., Vol. 50, pp. 50–59, Apr. 2016.
  • J. Koton, O. Sladok, J. Salasek, and P. Ushakov. “Current-mode fractional low- and high pass filters using current conveyors”, 8th Int. Congress on Ultra-Modern Telecommunications and Control Systems and Workshops — ICUMT, Lisbon, Portugal, pp. 231–234, 18–20 Oct. 2016.
  • L. A. Said, S. M. Ismail, A. G. Radwan, A. H. Median, M. F. A. El Yazeed, and A. M. Soliman, “On the optimization of fractional order low pass filter,” Circuits Syst. Signal Process, Vol. 35, no. 6, pp. 2017–2039, Jun. 2016.
  • C. Psychalinos, G. Tsirimokou, and A. S. Elwakil, “Switched-Capacitor fractional-step Butterworth filter design,” Circuits Syst. Signal Process, Vol. 35, pp. 1377–1393, Apr. 2016.
  • M. C. Tripathy, “Experimental realization of fractional order filter using PMMA coated constant phase elements,” International J. Engineering and Advanced Research Technology (IJEART), Vol. 1, no. 5, pp. 14–17, Nov. 2015.
  • T. J. Freeborn, “Comparison of (1+α) fractional-order transfer functions to approximate low pass Butterworth magnitude responses,” Circuits Syst. Signal Process., Vol. 35, no. 6, pp. 1983–2002, Jun. 2016.
  • G. Tsirimokou, S. Koumousi, and C. Psychalinos, “Design of fractional-order filters using current feedback operational amplifiers,” J. Eng. Sci. Technol. Rev, Vol. 9, no. 4, pp. 77–81, Jan. 2016.
  • R. Verma, N. Pandey, and R. Pandey, “Realization of a higher fractional order element based on novel OTA based IIMC and its application in filter,” Analog Integ. Circuits Signal Process, Vol. 97, pp. 177–191, Oct. 2018.
  • J. Jerabek, R. Sotner, J. Dvorak, J. Polak, D. Kubanek, N. Herencsar, and J. Koton, “Reconfigurable fractional-order filter with electronically controllable slope of attenuation, pole frequency and type of approximation,” J Circuits Syst Comput, Vol. 26, no. 10, pp. 1–21, Oct. 2017.
  • J. Koton, D. Kubanek, O. Sladok, and K. Vrba, “Fractional-order low- and high-pass filters using UVCs,” J Circuits Syst Comput, Vol. 26, no. 12, pp. 1–23, Dec. 2017.
  • G. Tsirimokou, C. Psychalinos, and A. S. Elwakil, “Fractional-order electronically controlled generalized filters,” Int. J. Circ. Theor. Appl, Vol. 45, pp. 595–612, May. 2017.
  • G. Kaur, A. Q. Ansari, and M. S. Hashmi, “Fractional order multifunction filter with 3degrees of freedom,” AEU-Int. J. Electron. Commun., Vol. 82, pp. 127–135, Dec. 2017.
  • L. Langhammer, J. Dvorak, R. Sotner, and J. Jerabek, “Electronically tunable fully differential fractional-order low-pass filter,” Elektron. Elektrotech., Vol. 23, no. 3, pp. 47–54, Jun. 2017.
  • R. Verma, N. Pandey, and R. Pandey, “Electronically tunable fractional order all pass filter,” IOP Conf. Ser. Mater Sci. Eng, Vol. 225, pp. 1–9, Aug. 2017.
  • P. Bertsias, F. Khateb, D. Kubanek, F. A. Khanday, and C. Psychalinos, “Capacitorless digitally programmable fractional-order filters,” AEU-Int. J. Electron Commun, Vol. 78, pp. 228–237, Aug. 2017.
  • J. Baranowski, M. Pauluk, and A. Tutaj, “Analog realization of fractional filters: Laguerre approximation approach,” AEU-Int. J. Electron Commun, Vol. 81, pp. 1–11, Nov. 2017.
  • D. R. Bhaskar, M. Kumar, and P. Kumar, “Fractional order inverse filters using operational amplifier,” Analog. Integr. Circuits. Signal. Process., Vol. 97, no. 1, pp. 149–158, Oct. 2018.
  • E. M. Hamed, A. M. Abdelaty, L. A. Said, and A. G. Radwan, “Effect of different approximation techniques on fractional-order KHN filter design,” Circuits Syst. Signal Process., Vol. 37, pp. 5222–5252, Dec. 2018.
  • D. Kubanek, and T. Freeborn, “(1+α) fractional-order transfer functions to approximate low-pass magnitude responses with arbitrary quality factor,” AEU-Int. J. Electron. Commun., Vol. 83, pp. 570–578, Jun. 2018.
  • S. Mahata, R. Kar, and D. Mandal, “Optimal fractional-order highpass Butterworth magnitude characteristics realization using current mode filter,” AEU-Int. J. Electron. Commun., Vol. 102, pp. 78–89, Apr. 2019.
  • N. A. Khalil, L. A. Said, A. G. Radwan, and A. M. Soliman, “Generalized two-port network based fractional order filters,” AEU-Int. J. Electron. Commun., Vol. 104, pp. 128–146, May. 2019.
  • D. Kubanek, T. Freeborn, and J. Koton, “Fractional-order band-pass filter design using fractional-characteristic specimen functions,” AEU-Int. J. Electron. Commun., Vol. 86, pp. 77–86, Apr. 2019.
  • R. Verma, N. Pandey, and R. Pandey, “CFOA based low pass and high pass fractional step filter realization,” AEU-Int. J Electron Commun, Vol. 99, pp. 161–176, Feb. 2019.
  • E. M. Hamed, L. A. Said, H. M. Ahmed, and A. G. Radwan, “On the Approximations of CFOA-based fractional-order inverse filters,” Circuits Syst Signal Process, Vol. 38, 1–28, May. 2019.
  • A. Leuciuc, “Using nullors for realization of inverse transfer functions and characteristics,” Electron. Lett., Vol. 33, no. 11, pp. 949–951, 1997.
  • B. Chipipop, and W. Surakampontorn, “Realization of current-mode FTFN-based inverse filter,” Electron. Lett., Vol. 35, no. 9, pp. 690–692, 1999.
  • H. Y. Wang, and C. T. Lee, “Using nullors for realization of current-mode FTFN based inverse filters,” Electron. Lett., Vol. 35, no. 22, pp. 1889–1890, 1999.
  • M. T. Abuelma’atti, “Identification of cascadable current-mode filters and inverse-filters using single FTFN,” Frequenz, Vol. 54, no. 11–12, pp. 284–289, 2000.
  • S. S. Gupta, D. R. Bhaskar, and R. Senani, “New analogue inverse filters realized with current feedback op-amp,” Int. J. Electron., Vol. 98, no. 8, pp. 1103–1113, 2011.
  • S. S. Gupta, D. R. Bhaskar, R. Senani, and A. K. Singh, “Inverse active filters employing CFOAs,” Electr. Eng., Vol. 91, no. 1, pp. 23–26, 2009.
  • H. P. Chen, “High-input impedance voltage-mode multifunction filter with four grounded components and only two plus type DDCCs,” Act. Passive Electron. Compon., Vol. 2010, no. 5, p. 5, Dec. 2010. Article ID 362516.
  • C. T. Lee, and H. Y. Wang, “Minimum realization for FTFN-based SRCO,” Electron. Lett., IEE (UK), Vol. 37, no. 20, pp. 1207–1208, Sep. 2001.
  • A. G. Radwan, A. M. Soliman, A. S. Elwakil, and A. Sedeek, “On the stability of linear systems with fractional-order elements,” Chaos, Solutions Fractals, Vol. 40, no. 5, pp. 2317–2328, Oct. 2009.
  • R. Verma, N. Pandey, and R. Pandey, “Electronically tunable fractional order filter,” Arabian J. Sci. Eng., Vol. 42, no. 8, pp. 3409–3422, Aug. 2017.
  • P. Prommee, and M. Somdunyakanok, “CMOS-based current-controlled DDCC and its applications to capacitance multiplier and universal filter,” AEU-Int. J. Electron. Commun., Vol. 65, no. 1, pp. 1–8, Jan. 2011.
  • A. Kumar, and S. K. Paul, “Nth order current mode universal filter using MOCCCIIs,” Analog. Integr. Circuits. Signal. Process., Vol. 95, pp. 181–193, Apr. 2018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.