645
Views
6
CrossRef citations to date
0
Altmetric
Articles

Towards Neuro-Fuzzy Compensated PID Control of Lower Extremity Exoskeleton System for Passive Gait Rehabilitation

ORCID Icon &

References

  • A. G. Rudd, A. Bowen, G. R. Young, and M. A. James, “The latest national clinical guideline for stroke,” J. Clin. Med, Vol. 17, pp. 154, Apr. 2017. doi: 10.7861/clinmedicine.17-2-154
  • World Health Organization, Global Health Estimates 2016. Deaths by Cause, Age, Sex, by Country and by Region, 2000-2016. Geneva: WHO, 2018.
  • V. L. Feigin, M. H. Forouzanfar, R. Krishnamurthi, G. A. Mensah, M. Connor, D. A. Bennett, A. E. Moran, R. L. Sacco, L. Anderson, and T. Truelsen, “Global and regional burden of stroke during 1990–2010: findings from the global burden of disease study 2010,” Lancet, Vol. 383, pp. 245–55, Jan. 2014. doi: 10.1016/S0140-6736(13)61953-4
  • V. L. Feigin, et al., “Global burden of stroke and risk factors in 188 countries, during 1990–2013: a systematic analysis for the global burden of disease study 2013,” Lancet Neurol., Vol. 15, pp. 913–24, Aug. 2016. doi: 10.1016/S1474-4422(16)30073-4
  • About Stroke. Available from: https://www.stroke.org/en/about-stroke, 2019, [cited: 27 May 2020].
  • P. Langhorne, F. Coupar, and A. Pollock, “Motor recovery after stroke: a systematic review,” Lancet Neurol., Vol. 8, pp. 741–54, Aug. 2009. doi: 10.1016/S1474-4422(09)70150-4
  • K. Probosz, R. Wcislo, J. Otfinowski, R. Slota, J. Kitowski, M. Pisula, and A. Sobczyk, “A multimedia holistic rehabilitation method for patients after stroke,” Annu. Rev. CyberTherapy Telemed, Vol. 7, pp. 261–3, Jun. 2009.
  • K. Lo, M. Stephenson, and C. Lockwood, “Effectiveness of robotic assisted rehabilitation for mobility and functional ability in adult stroke patients: a systematic review protocol,” JBI. Database. System. Rev. Implement. Rep., Vol. 15, pp. 3049–91, Dec. 2017. doi: 10.11124/JBISRIR-2017-003456
  • B. Kalita, J. Narayan, and S. K. Dwivedy, “Development of active lower limb robotic-based orthosis and exoskeleton devices: A systematic review,” Int. J. Soc. Robot, 1–19, Jun. 2020. DOI: 10.1007/s12369-020-00662-9.
  • S. Mohan, J. K. Mohanta, S. Kurtenbach, J. Paris, B. Corves, and M. Huesing, “Design, development and control of a 2PRP-2PPR planar parallel manipulator for lower limb rehabilitation therapies,” Mech. Mach. Theory., Vol. 112, pp. 272–94, Jun. 2017. doi: 10.1016/j.mechmachtheory.2017.03.001
  • M. Cestari, D. Sanz-Merodio, J. C. Arevalo, and E. Garcia, “ARES, a variable stiffness actuator with embedded force sensor for the ATLAS exoskeleton,” Ind Rob: An Int. J, Vol. 41, pp. 518–26, Oct. 2014. doi: 10.1108/IR-06-2014-0350
  • O. Baser, H. Kizilhan, and E. Kilic, “Biomimetic compliant lower limb exoskeleton (BioComEx) and its experimental evaluation,” J. Braz. Soc. Mech. Sci. & Eng, Vol. 41, pp. 226, May 2019. doi: 10.1007/s40430-019-1729-4
  • S. K. Banala, S. K. Agrawal, S. H. Kim, and J. P. Scholz, “Novel gait adaptation and neuromotor training results using an active leg exoskeleton,” IEEE. ASME. Trans. Mechatron., Vol. 15, pp. 216–25, Feb. 2010. doi: 10.1109/TMECH.2010.2041245
  • R. Riener, L. Lünenburger, I. C. Maier, G. Colombo, and V. Dietz, “Locomotor training in subjects with sensori-motor deficits: an overview of the robotic gait orthosis lokomat,” J. Healthc. Eng., Vol. 1, pp. 197–216, Jun. 2010. doi: 10.1260/2040-2295.1.2.197
  • J. F. Veneman, R. Kruidhof, E. E. Hekman, R. Ekkelenkamp, E. H. Van Asseldonk, and H. Van Der Kooij, “Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation,” IEEE Trans. Neural Syst. Rehabilitation Eng, Vol. 15, pp. 379–86, Sep. 2007. doi: 10.1109/TNSRE.2007.903919
  • Y. Long, Z. Du, C. Chen, W. Wang, L. He, X. Mao, G. Xu, G. Zhao, X. Li, and W. Dong, “Development and analysis of an electrically actuated lower extremity assistive exoskeleton,” J. Bionic Eng., Vol. 14, pp. 272–83, Jun. 2017. doi: 10.1016/S1672-6529(16)60397-9
  • H. T. Tran, H. Cheng, H. Rui, X. Lin, M. K. Duong, and Q. Chen, “Evaluation of a fuzzy-based impedance control strategy on a powered lower exoskeleton,” Int. J. Soc. Robot, Vol. 8, pp. 103–23, Jan. 2016. doi: 10.1007/s12369-015-0324-9
  • M. Vasanthakumar, B. Vinod, J. K. Mohanta, and S. Mohan, “Design and robust motion control of a planar 1P-2P RP hybrid manipulator for lower limb rehabilitation applications,” J Intell Robot Syst, Vol. 96, pp. 17–30, Oct. 2019. doi: 10.1007/s10846-018-0972-8
  • S. Hussain, S. Q. Xie, and P. K. Jamwal, “Control of a robotic orthosis for gait rehabilitation,” Rob. Auton. Syst., Vol. 61, pp. 911–9, Sep. 2013. doi: 10.1016/j.robot.2013.01.007
  • A. P. P. A. Majeed, Z. Taha, A. F. Z. Abidin, M. A. Zakaria, I. M. Khairuddina, M. A. M. Razman, and Z. Mohamed, “The control of a lower limb exoskeleton for gait rehabilitation: a hybrid active force control approach,” Procedia. Comput. Sci., Vol. 105, pp. 183–90, Jan. 2017. doi: 10.1016/j.procs.2017.01.204
  • Q. T. Dao, and S. I. Yamamoto. “Tracking control of a robotic orthosis for gait rehabilitation: A feedforward-feedback control approach,” in Proc. 10th Biomedical Engineering International Conference (BMEiCON), Hokkaido, Japan, 2017, pp. 1–5.
  • Z. Shen, J. Zhou, J. Gao, and R. Song. “Fuzzy logic based PID control of a 3 DOF lower limb rehabilitation robot,” in Proc. IEEE 8th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), Tianjin, China, 2018, pp. 818–21.
  • J. Narayan, A. Kalani, and S. K. Dwivedy. “Reference trajectory based Jacobian transpose control of a novel lower limb exoskeleton system for children,” in Proc. IEEE 5th International Conference On Signal Processing, Computing And Control (ISPCC), Solan, India, 2019, pp. 102–7.
  • S. K. Banala, S. K. Agrawal, and J. P. Scholz. “Active Leg Exoskeleton (ALEX) for gait rehabilitation of motor-impaired patients,” in Proc. IEEE 10th International Conference On Rehabilitation Robotics, Noordwijk, Netherlands, 2007, pp. 401–7.
  • D. A. Winter. Biomechanics and motor control of human movement. Waterloo: John Wiley & Sons, 2009.
  • T. Malone, T. A. Blackburn, and L. A. Wallace, “Knee rehabilitation,” Phys. Ther., Vol. 60, pp. 1602–10, Dec. 1980. doi: 10.1093/ptj/60.12.1602
  • Z. Zhang, “Microsoft kinect sensor and its effect,” IEEE Multimedia, Vol. 19, pp. 4–10, Apr. 2012. doi: 10.1109/MMUL.2012.24
  • C. Elliott, V. Vijayakumar, W. Zink, and R. Hansen, “National instruments LabVIEW: a programming environment for laboratory automation and measurement,” JALA-J Lab Auto, Vol. 12, pp. 17–24, Feb. 2007. doi: 10.1016/j.jala.2006.07.012
  • National Instruments, Kinesthesia Toolkit for Microsoft Kinect - University of Leeds. http://sine.ni.com/nips/cds/view/p/lang/en/nid/210938, [cited: 02 march 2020].
  • J. Narayan, A. Pardashani, and S. K. Dwivedy. “Comparative gait analysis of healthy young male and female adults using Kinect-Labview setup,” in Proc. IEEE 1st International Conference on Computational Performance Evaluation (ComPE), Shillong, India, 2020, pp. 688–93.
  • J. J. Craig. Introduction to robotics: mechanics and control. Upper Saddle River, NJ: Pearson Prentice Hall, 2005, p. 150–1.
  • J. Wu, J. Gao, R. Song, R. Li, Y. Li, and L. Jiang, “The design and control of a 3DOF lower limb rehabilitation robot,” Mechatronics. (Oxf), Vol. 33, pp. 13–22, Feb. 2016. doi: 10.1016/j.mechatronics.2015.11.010
  • S. Cong, and Y. Liang, “PID-like neural network nonlinear adaptive control for uncertain multivariable motion control systems,” IEEE Trans. Ind. Electron, Vol. 56, pp. 3872–9, Apr. 2009. doi: 10.1109/TIE.2009.2018433
  • P. J. Gaidhane, M. J. Nigam, A. Kumar, and P. M. Pradhan, “Design of interval type-2 fuzzy pre compensated PID controller applied to two-DOF robotic manipulator with variable payload,” ISA Trans., Vol. 89, pp. 169–85, Jun. 2019. doi: 10.1016/j.isatra.2018.12.030
  • G. Goswami, and P. K. Goswami, “ANFIS Supervised PID controlled SAPF for Harmonic current Compensation at nonlinear Loads,” IETE. J. Res., 1–12, Jun 2020. DOI: 10.1080/03772063.2020.1770134.
  • J. S. Jang, “ANFIS: adaptive-network-based fuzzy inference system,” IEEE T Syst Man Cy, Vol. 23, pp. 665–85, May 1993. doi: 10.1109/21.256541
  • S. Tripathi, A. Upadhyay, S. Kotyan, and S. Yadav, “Analysis and Comparison of different fuzzy inference systems used in Decision Making for Secondary Users in Cognitive Radio network,” Wirel. Pers. Commun., Vol. 104, pp. 1175–208, Feb. 2019. doi: 10.1007/s11277-018-6075-9
  • I. Goldhirsch, P. L. Sulem, and S. A. Orszag, “Stability and Lyapunov stability of dynamical systems: A differential approach and a numerical method,” Physica D, Vol. 27, pp. 311–37, Aug. 1987. doi: 10.1016/0167-2789(87)90034-0
  • J. A. Vargas, W. Pedrycz, and E. M. Hemerly, “Improved learning algorithm for two-layer neural networks for identification of nonlinear systems,” Neurocomputing, Vol. 329, pp. 86–96, Feb. 2019. doi: 10.1016/j.neucom.2018.10.008
  • M. A. Maghenem, and A. Loria, “Strict Lyapunov functions for time-varying systems with persistency of excitation,” Automatica. (Oxf), Vol. 78, pp. 274–9, Apr. 2017. doi: 10.1016/j.automatica.2016.12.029

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.