122
Views
6
CrossRef citations to date
0
Altmetric
Articles

Finite Element Analysis of Graphene Oxide Hinge Structure-based RF NEM Switch

, & ORCID Icon

References

  • O. Y. Loh and H. D. Espinosa, “Nanoelectromechanical contact switches,” Nat. Nanotechnol., Vol. 7, pp. 283–95, May 2012. doi: 10.1038/nnano.2012.40
  • S. M. Kim, et al., “Suspended few-layer graphene beam electromechanical switch with abrupt on-off characteristics and minimal leakage current,” Appl. Phys. Lett., Vol. 99, p. 023103, Jul. 2011. doi: 10.1063/1.3610571
  • M. Y. Han and P. Kim, “Graphene nanoribbon devices at high bias,” Nano Convergence, Vol. 1, p. 1, Dec. 2014. doi: 10.1186/s40580-014-0001-y
  • P. Li, Z. You, G. Haugstad, and T. Cui, “Graphene fixed-end beam arrays based on mechanical exfoliation,” Appl. Phys. Lett., Vol. 98, p. 253105, Dec. 2014. doi: 10.1063/1.3594242
  • X. Liu, et al.., “Large arrays and properties of 3-terminal graphene nanoelectromechanical switches,” Adv. Mater., Vol. 26, pp. 1571–1576, Mar. 2014. doi: 10.1002/adma.201304949
  • N. Mizuno, B. Nielsen, and X. Du, “Ballistic-like supercurrent in suspended graphene Josephson weak links,” Nat. Commun., Vol. 4, pp. 1–6, Nov. 2013.
  • A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nanosci. Nanotechno. Collect. Rev. Nat. J., Vol. 6, pp. 11–19, Mar. 2007.
  • M. Nagase, H. Hibino, H. Kageshima, and H. Yamaguchi, “Graphene-based nano-electro-mechanical switch with high on/off ratio,” Appl. Phys. Express, Vol. 6, p. 055101, Apr. 2013. doi: 10.7567/APEX.6.055101
  • J. Sun, W. Wang, M. Muruganathan, and H. Mizuta, “Low pull-in voltage graphene electromechanical switch fabricated with a polymer sacrificial spacer,” Appl. Phys. Lett., Vol. 105, p. 033103, Jul. 2014. doi: 10.1063/1.4891055
  • J. Sun, M. E. Schmidt, M. Muruganathan, H. M. Chong, and H. Mizuta, “Large-scale nanoelectromechanical switc-hes based on directly deposited nanocrystalline graphene on insulating substrates,” Nanoscale., Vol. 8, pp. 6659–6665, Mar. 2016. doi: 10.1039/C6NR00253F
  • K. M. Milaninia, M. A. Baldo, A. Reina, and J. Kong, “All graphene electromechanical switch fabricated by chemical vapor deposition,” Appl. Phys. Lett., Vol. 95, p. 183105, Nov. 2009. doi: 10.1063/1.3259415
  • M. A. Zulkefli, M. A. Mohamed, K. S. Siow, B. Yeop Majlis, J. Kulothungan, M. Muruganathan, and H. Mizuta, “Three-dimensional finite element method simulation of perforated graphene Nano-electro-mechanical (NEM) switches,” Micromachines. (Basel), Vol. 8, pp. 236, Aug. 2017. doi: 10.3390/mi8080236
  • Z. Shi, et al., “Studies of graphene-based nanoelectromechanical switches,” Nano Res., Vol. 5, pp. 82–87, Feb. 2012. doi: 10.1007/s12274-011-0187-9
  • R. Chaudhary and P. R. Mudimela, “3d modeling of graphene oxide-based nanoelectromechanical capacitive switch,” Microsyst. Technol. (May 2020). DOI:10.1007/s00542-020-04880-z.
  • C. F. Moldovan, W. A. Vitale, P. Sharma, L. S. Bernard, and A. M. Ionescu, “Fabrication process and characterization of suspended graphene membranes for RF NEMS capacitive switches,” Microelectron. Eng., Vol. 145, pp. 5–8, Sep. 2015. doi: 10.1016/j.mee.2015.01.032
  • J. Sun, M. Muruganathan, N. Kanetake, and H. Mizuta, “Locally-actuated graphene-based nano-electro-mecha-nical switch,” Micromachines. (Basel), Vol. 7, p. 124, Jul. 2016. doi: 10.3390/mi7070124
  • A. Saxena, and V. K. Agrawal, “Comparative study of perforated RF MEMS switch,” Procedia. Comput. Sci., Vol. 57, pp. 139–145, Jan. 2015. doi: 10.1016/j.procs.2015.07.395
  • K. Guha, M. Kumar, S. Agarwal, and S. Baishya, “A modified capacitance model of RF MEMS shunt switch incorporating fringing field effects of perforated beam,” Solid-State Electron., Vol. 114, pp. 35–42, Dec. 2015. doi: 10.1016/j.sse.2015.07.008
  • M. Inagaki, and F. Kang, “Graphene derivatives: graphane, fluorographene, graphene oxide, graphyne and graphdiyne,” J. Mater. Chem. A, Vol. 2, pp. 13193–13206, Jun. 2014. doi: 10.1039/C4TA01183J
  • C. Cao, M. Daly, C. V. Singh, Y. Sun, and T. Filleter, “High strength measurement of monolayer graphene oxide,” Carbon. N. Y., Vol. 81, pp. 497–504, Jan. 2015. doi: 10.1016/j.carbon.2014.09.082
  • R. Chaudhary, and P. R. Mudimela, “Pull-in response and eigen frequency analysis of graphene oxide-based NEMS switch,” Mater. Today Proc., Vol. 28, pp. 196–200, Feb. 2020. doi: 10.1016/j.matpr.2020.01.560
  • R. Chaudhary, and P. R. Mudimela, “Finite element analysis of graphene oxide based nanoelectromechanical capacitive switch,” Beilstein Arch., Vol. 83, p. 201983, Aug. 2019.
  • J. Wan, J. W. Jiang, and H. S. Park, “Negative Poisson’s ratio in graphene oxide,” Nanoscale, Vol. 9, pp. 4007–4012, Feb. 2017. doi: 10.1039/C6NR08657H
  • J. B. Ma, L. Jiang, and S. F. Asokanthan, “Influence of surface effects on the pull-in instability of NEMS electrostatic switches,” Nanotechnology, Vol. 21, p. 505708, Nov. 2013. doi: 10.1088/0957-4484/21/50/505708
  • C. O. M. S. O. L. Multiphysics and C. M. M. G. Version, “4.3 a: AC/DC module user’s Guide,” Stockholm, Sweden: COMSOL AB (2012).
  • M. Manivannan, R. J. Daniel, and K. Sumangala, “Low actuation voltage RF MEMS switch using varying section composite fixed-fixed beam,” International Journal of Microwave Science and Technology, paper id-862649, pp. 1–12, Oct. 2014.
  • D. Lee, T. Osabe, and T. J. K. Liu, “Scaling limitations for flexural beams used in electromechanical devices,” IEEE Trans. Electron Devices, Vol. 56, pp. 688–691, Feb. 2009. doi: 10.1109/TED.2009.2014190
  • L. Y. Ma, A. N. Nordin, and N. Soin, “Design, optimization and simulation of a low-voltage shunt capacitive RF-MEMS switch,” Microsyst. Technol., Vol. 22, pp. 537–549, Mar. 2016. doi: 10.1007/s00542-015-2585-5
  • P. N. Kambali, and A. K. Pandey, “Capacitance and force computation due to direct and fringing effects in MEMS/NEMS arrays,” IEEE Sensors J., Vol. 16, pp. 375–382, Sep. 2015. doi: 10.1109/JSEN.2015.2480842
  • K. Guha, M. Kumar, A. Parmar, and S. Baishya, “Performance analysis of RF MEMS capacitive switch with non uniform meandering technique,” Microsyst. Technol., Vol. 22, pp. 2633–2640, Nov. 2016. doi: 10.1007/s00542-015-2545-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.