196
Views
2
CrossRef citations to date
0
Altmetric
Articles

CMOS Schmitt – Inverter-Based Internal Reference Comparator Array for High Temperature Flash ADC

ORCID Icon &

References

  • M. A. Huque, L. M. Tolbert, B. J. Blalock and S. K. Islam, “Silicon-on-insulator-based high-voltage, high-temperature integrated circuit gate driver for silicon carbide-based power field effect transistors,” IET Power Electron., Vol. 3, no. 6, pp. 1001–1009, 2010.
  • P. G. Neudeck, R. S. Okojie and L. Y. Chen, “High-temperature electronics-a role for wide bandgap semiconductors,” Proc. IEEE, Vol. 90, no. 6, pp. 1065–1076, 2002.
  • J. C. Zolper, “A review of junction field effect transistors for high-temperature and high- power electronics,” Solid. State. Electron., Vol. 42, no. 12, pp. 2153–2156, 1998.
  • X. Guo, Q. Xun, Z. Li and S. Du, “Silicon carbide converters and MEMS devices for high-temperature power electronics: A critical review,” Micromachines, Vol. 10, no. 6, pp. 406, 2019.
  • A. Rahman, L. Caley, S. Roy, N. Kuhns, A. Mantooth, J. Di, M. F. Anthony and J. Holmes, “High temperature data converters in silicon carbide CMOS,” IEEE. Trans. Electron. Devices., Vol. 64, no. 4, pp. 1426–1432, 2017.
  • A. Hassan, M. Ali, A. Trigui, Y. Savaria and M. Sawan, “A GaN-based wireless monitoring system for high-temperature applications,” Sensors, Vol. 19, no. 8, p. 1785, 2019.
  • W. Jiang, Y. Zhu, M. Zhang, C. H. Chan and R. P. Martins, “A temperature-stabilized single-channel 1-GS/s 60-dB SNDR SAR-Assisted pipelined ADC with dynamic gm-R-Based amplifier,” IEEE J Solid State Circuits, Vol. 55, no. 2, pp. 322–332, 2019.
  • C. Davis and I. Finvers, “A 14-bit high-temperature ΣΔ modulator in standard CMOS,” IEEE. J. Solid-State. Circuits., Vol. 38, no. 6, pp. 976–986, 2003.
  • F. N. Trofimenkoff, J. W. Haslett, S. E. Nordquist, D. J. Paslawski and C. O. Li, “A high resolution CMOS A/D converter for operation at 1750C,” Microelectronics. J., Vol. 23, no. 3, pp. 185–190, 1992.
  • A. V. Fonseca, L. Cron, F. A. P. Baruqui, C. Fernando, P. Benabes and P. M. Ferreira, “A temperature-Aware analysis of SAR ADCs for smart vehicle applications,” J. Int. Circuits Syst., Vol. 13, no. 1, p. 1, 2018.
  • A. Tangel and K. Choi, “The CMOS inverter as a comparator in ADC designs,” Analog. Integr. Circuits. Signal. Process., Vol. 39, no. 2, pp. 147–155, 2004.
  • G. Prathiba, M. Santhi and A. Ahilan, “Design and implementation of reliable flash ADC for microwave applications,” Microelectron. Reliab., Vol. 88, pp. 91–97, 2018.
  • M. Stanoeva and A. Popov, “Asynchronous parallel resistorless ADC,” Electronics' 2005, Vol. 1, pp. 3–8, 2005.
  • J. Yoo, D. Lee, K. Choi and A. Tangel, “Future-ready ultrafast 8bit CMOS ADC for system-on-chip applications,” Power, Vol. 2, p. 1, 2001.
  • A. Celebi, O. Aytar and A. Tangel, “A 10-bit 500 Ms/s two-step flash ADC,” In EUROCON 2005-The IEEE International Conference on Computer as a Tool, Vol. 2, 2005, pp. 898–901.
  • O. Aytar and A. Tangel, “Employing threshold inverter quantization (TIQ) technique in designing 9-Bit folding and interpolation CMOS analog-to-digital converters (ADC),” Sci. Res. Essays, Vol. 6, no. 2, pp. 351–362, 2011.
  • C. Hongming, H. Yueguo, Z. Long, and C. Yuhua, “An area-efficient 55 nm 10-bit 1-MS/s SAR ADC for battery voltage measurement,” J. Semiconductors, Vol. 34, no. 9, p. 095013, 2013.
  • D. Kumar, S. K. Pandey, N. Gupta and H. Shrimali, “Design of hybrid flash-SAR ADC using an inverter based comparator in 28 nm CMOS,” Microelectronics. J., Vol. 95, p. 104666, 2020.
  • S. M. Sharroush, “Inverter–based voltage–controlled and programmable comparators,” Int. J. Circuit Theory Appl., Vol. 48, no. 7, pp. 1070–1092, 2020.
  • A. Tangel, M. Yakut and M. Ayar, “An auto calibrator for TIQ based flash ADC designs,” in Proceedings of the 6th WSEAS Int. Conf. on Circuits, Systems, Electronics, Control and Signal Processing (CSECS), Vol. 7, 2007, pp. 47–51.
  • P. Mroszczyk, J. Goodacre and V. F. Pavlidis, “Energy efficient flash ADC with PVT variability compensation through advanced body biasing”,” IEEE Trans. Circuits Syst. II: Express Briefs, Vol. 66, no. 11, pp. 1775–1779, 2019.
  • J. Wang, W. S. Tam, C. W. Kok and K. P. Pun, “A 5-bit 500 MS/s flash ADC with temperature-compensated inverter-based comparators,” Solid State Electron. Lett., Vol. 2, pp. 1–9, 2020.
  • B. L. Dokic, “CMOS schmitt triggers,” IEE Proc. G-Electron Circuits Syst., Vol. 131, no. 5, pp. 197–202, 1984.
  • M. Steyaert and W. Sansen, “Novel CMOS schmitt trigger”,” Electron. Lett., Vol. 22, no. 4, pp. 203–204, 1986.
  • A. Pfister, “Novel CMOS schmitt trigger with controllable hysteresis,” Electron. Lett., Vol. 28, no. 7, pp. 639–641, 1992.
  • D. Kim, J. Kih and W. Kim, “A new waveform-reshaping circuit: An alternative approach to Schmitt trigger,” IEEE. J. Solid-State. Circuits., Vol. 28, no. 2, pp. 162–164, 1993.
  • S. F. Al-Sarawi, “Low power schmitt trigger circuit,” Electron. Lett., Vol. 38, no. 18, pp. 1009–1010, 2002.
  • V. A. Pedroni, “Low-voltage high-speed Schmitt trigger and compact window comparator,” Electron. Lett., Vol. 41, no. 22, pp. 1213–1214, 2005.
  • H. Ghasemian, R. Ghasemi, E. Abiri and M. R. Salehi, “A novel high-speed low-power dynamic comparator with complementary differential input in 65 nm CMOS technology,” Microelectronics. J., Vol. 92, p. 104603, 2019.
  • L. Nagy, V. Stopjakova, D. Arbet, M. Potocny and M. Kovac, “An ultra low-voltage rail-to-rail comparator for on-chip energy harvesters,” AEU-Int. J. Electron. Commun., Vol. 108, pp. 10–18, 2019.
  • N. Z. M. Kamal, N. Ahmad, S. H. Ruslan, H. A. Majid, C. Y. Chia, M. S. Kamaruzaman and M. K. K. Wen, “Design voltage comparator 14-bit for successive approximation analog-to-digital converter,” J. Phys. Conf. Ser., Vol. 1529, no. 5, p. 052100, 2020.
  • B. Razavi, M. B. Tavakoli and F. Setoudeh, “Approach for low power high speed 4-bit flash analogue to digital converter,” IET Circuits Devices Syst., Vol. 14, no. 4, pp. 425–431, 2020.
  • I. M. Filanovsky and H. Baltes, “CMOS Schmitt trigger design,” IEEE Trans. Circuits Syst. I: Fundamental Theory Appl., Vol. 41, no. 1, pp. 46–49, 1994.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.